static_inst.hh revision 2654:9559cfa91b9d
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_STATIC_INST_HH__
30#define __CPU_STATIC_INST_HH__
31
32#include <bitset>
33#include <string>
34
35#include "base/hashmap.hh"
36#include "base/misc.hh"
37#include "base/refcnt.hh"
38#include "cpu/op_class.hh"
39#include "sim/host.hh"
40#include "arch/isa_traits.hh"
41
42// forward declarations
43struct AlphaSimpleImpl;
44struct OzoneImpl;
45struct SimpleImpl;
46class ExecContext;
47class DynInst;
48class Packet;
49
50template <class Impl>
51class AlphaDynInst;
52
53template <class Impl>
54class OzoneDynInst;
55
56class CheckerCPU;
57class FastCPU;
58class AtomicSimpleCPU;
59class TimingSimpleCPU;
60class InorderCPU;
61class SymbolTable;
62
63namespace Trace {
64    class InstRecord;
65}
66
67/**
68 * Base, ISA-independent static instruction class.
69 *
70 * The main component of this class is the vector of flags and the
71 * associated methods for reading them.  Any object that can rely
72 * solely on these flags can process instructions without being
73 * recompiled for multiple ISAs.
74 */
75class StaticInstBase : public RefCounted
76{
77  protected:
78
79    /// Set of boolean static instruction properties.
80    ///
81    /// Notes:
82    /// - The IsInteger and IsFloating flags are based on the class of
83    /// registers accessed by the instruction.  Although most
84    /// instructions will have exactly one of these two flags set, it
85    /// is possible for an instruction to have neither (e.g., direct
86    /// unconditional branches, memory barriers) or both (e.g., an
87    /// FP/int conversion).
88    /// - If IsMemRef is set, then exactly one of IsLoad or IsStore
89    /// will be set.
90    /// - If IsControl is set, then exactly one of IsDirectControl or
91    /// IsIndirect Control will be set, and exactly one of
92    /// IsCondControl or IsUncondControl will be set.
93    /// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
94    /// implemented as flags since in the current model there's no
95    /// other way for instructions to inject behavior into the
96    /// pipeline outside of fetch.  Once we go to an exec-in-exec CPU
97    /// model we should be able to get rid of these flags and
98    /// implement this behavior via the execute() methods.
99    ///
100    enum Flags {
101        IsNop,		///< Is a no-op (no effect at all).
102
103        IsInteger,	///< References integer regs.
104        IsFloating,	///< References FP regs.
105
106        IsMemRef,	///< References memory (load, store, or prefetch).
107        IsLoad,		///< Reads from memory (load or prefetch).
108        IsStore,	///< Writes to memory.
109        IsStoreConditional,    ///< Store conditional instruction.
110        IsInstPrefetch,	///< Instruction-cache prefetch.
111        IsDataPrefetch,	///< Data-cache prefetch.
112        IsCopy,         ///< Fast Cache block copy
113
114        IsControl,		///< Control transfer instruction.
115        IsDirectControl,	///< PC relative control transfer.
116        IsIndirectControl,	///< Register indirect control transfer.
117        IsCondControl,		///< Conditional control transfer.
118        IsUncondControl,	///< Unconditional control transfer.
119        IsCall,			///< Subroutine call.
120        IsReturn,		///< Subroutine return.
121
122        IsCondDelaySlot,///< Conditional Delay-Slot Instruction
123
124        IsThreadSync,	///< Thread synchronization operation.
125
126        IsSerializing,	///< Serializes pipeline: won't execute until all
127                        /// older instructions have committed.
128        IsSerializeBefore,
129        IsSerializeAfter,
130        IsMemBarrier,	///< Is a memory barrier
131        IsWriteBarrier,	///< Is a write barrier
132
133        IsNonSpeculative, ///< Should not be executed speculatively
134        IsQuiesce,      ///< Is a quiesce instruction
135
136        IsIprAccess,    ///< Accesses IPRs
137        IsUnverifiable, ///< Can't be verified by a checker
138
139        NumFlags
140    };
141
142    /// Flag values for this instruction.
143    std::bitset<NumFlags> flags;
144
145    /// See opClass().
146    OpClass _opClass;
147
148    /// See numSrcRegs().
149    int8_t _numSrcRegs;
150
151    /// See numDestRegs().
152    int8_t _numDestRegs;
153
154    /// The following are used to track physical register usage
155    /// for machines with separate int & FP reg files.
156    //@{
157    int8_t _numFPDestRegs;
158    int8_t _numIntDestRegs;
159    //@}
160
161    /// Constructor.
162    /// It's important to initialize everything here to a sane
163    /// default, since the decoder generally only overrides
164    /// the fields that are meaningful for the particular
165    /// instruction.
166    StaticInstBase(OpClass __opClass)
167        : _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
168          _numFPDestRegs(0), _numIntDestRegs(0)
169    {
170    }
171
172  public:
173
174    /// @name Register information.
175    /// The sum of numFPDestRegs() and numIntDestRegs() equals
176    /// numDestRegs().  The former two functions are used to track
177    /// physical register usage for machines with separate int & FP
178    /// reg files.
179    //@{
180    /// Number of source registers.
181    int8_t numSrcRegs()  const { return _numSrcRegs; }
182    /// Number of destination registers.
183    int8_t numDestRegs() const { return _numDestRegs; }
184    /// Number of floating-point destination regs.
185    int8_t numFPDestRegs()  const { return _numFPDestRegs; }
186    /// Number of integer destination regs.
187    int8_t numIntDestRegs() const { return _numIntDestRegs; }
188    //@}
189
190    /// @name Flag accessors.
191    /// These functions are used to access the values of the various
192    /// instruction property flags.  See StaticInstBase::Flags for descriptions
193    /// of the individual flags.
194    //@{
195
196    bool isNop() 	  const { return flags[IsNop]; }
197
198    bool isMemRef()    	  const { return flags[IsMemRef]; }
199    bool isLoad()	  const { return flags[IsLoad]; }
200    bool isStore()	  const { return flags[IsStore]; }
201    bool isStoreConditional()	  const { return flags[IsStoreConditional]; }
202    bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
203    bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
204    bool isCopy()         const { return flags[IsCopy];}
205
206    bool isInteger()	  const { return flags[IsInteger]; }
207    bool isFloating()	  const { return flags[IsFloating]; }
208
209    bool isControl()	  const { return flags[IsControl]; }
210    bool isCall()	  const { return flags[IsCall]; }
211    bool isReturn()	  const { return flags[IsReturn]; }
212    bool isDirectCtrl()	  const { return flags[IsDirectControl]; }
213    bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
214    bool isCondCtrl()	  const { return flags[IsCondControl]; }
215    bool isUncondCtrl()	  const { return flags[IsUncondControl]; }
216
217    bool isThreadSync()   const { return flags[IsThreadSync]; }
218    bool isSerializing()  const { return flags[IsSerializing] ||
219                                      flags[IsSerializeBefore] ||
220                                      flags[IsSerializeAfter]; }
221    bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
222    bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
223    bool isMemBarrier()   const { return flags[IsMemBarrier]; }
224    bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
225    bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
226    bool isQuiesce() const { return flags[IsQuiesce]; }
227    bool isIprAccess() const { return flags[IsIprAccess]; }
228    bool isUnverifiable() const { return flags[IsUnverifiable]; }
229    //@}
230
231    /// Operation class.  Used to select appropriate function unit in issue.
232    OpClass opClass()     const { return _opClass; }
233};
234
235
236// forward declaration
237class StaticInstPtr;
238
239/**
240 * Generic yet ISA-dependent static instruction class.
241 *
242 * This class builds on StaticInstBase, defining fields and interfaces
243 * that are generic across all ISAs but that differ in details
244 * according to the specific ISA being used.
245 */
246class StaticInst : public StaticInstBase
247{
248  public:
249
250    /// Binary machine instruction type.
251    typedef TheISA::MachInst MachInst;
252    /// Binary extended machine instruction type.
253    typedef TheISA::ExtMachInst ExtMachInst;
254    /// Logical register index type.
255    typedef TheISA::RegIndex RegIndex;
256
257    enum {
258        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,	//< Max source regs
259        MaxInstDestRegs = TheISA::MaxInstDestRegs,	//< Max dest regs
260    };
261
262
263    /// Return logical index (architectural reg num) of i'th destination reg.
264    /// Only the entries from 0 through numDestRegs()-1 are valid.
265    RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
266
267    /// Return logical index (architectural reg num) of i'th source reg.
268    /// Only the entries from 0 through numSrcRegs()-1 are valid.
269    RegIndex srcRegIdx(int i)  const { return _srcRegIdx[i]; }
270
271    /// Pointer to a statically allocated "null" instruction object.
272    /// Used to give eaCompInst() and memAccInst() something to return
273    /// when called on non-memory instructions.
274    static StaticInstPtr nullStaticInstPtr;
275
276    /**
277     * Memory references only: returns "fake" instruction representing
278     * the effective address part of the memory operation.  Used to
279     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
280     * just the EA computation.
281     */
282    virtual const
283    StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
284
285    /**
286     * Memory references only: returns "fake" instruction representing
287     * the memory access part of the memory operation.  Used to
288     * obtain the dependence info (numSrcRegs and srcRegIdx[]) for
289     * just the memory access (not the EA computation).
290     */
291    virtual const
292    StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
293
294    /// The binary machine instruction.
295    const ExtMachInst machInst;
296
297  protected:
298
299    /// See destRegIdx().
300    RegIndex _destRegIdx[MaxInstDestRegs];
301    /// See srcRegIdx().
302    RegIndex _srcRegIdx[MaxInstSrcRegs];
303
304    /**
305     * Base mnemonic (e.g., "add").  Used by generateDisassembly()
306     * methods.  Also useful to readily identify instructions from
307     * within the debugger when #cachedDisassembly has not been
308     * initialized.
309     */
310    const char *mnemonic;
311
312    /**
313     * String representation of disassembly (lazily evaluated via
314     * disassemble()).
315     */
316    mutable std::string *cachedDisassembly;
317
318    /**
319     * Internal function to generate disassembly string.
320     */
321    virtual std::string
322    generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
323
324    /// Constructor.
325    StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
326        : StaticInstBase(__opClass),
327          machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
328    {
329    }
330
331  public:
332
333    virtual ~StaticInst()
334    {
335        if (cachedDisassembly)
336            delete cachedDisassembly;
337    }
338
339/**
340 * The execute() signatures are auto-generated by scons based on the
341 * set of CPU models we are compiling in today.
342 */
343#include "cpu/static_inst_exec_sigs.hh"
344
345    /**
346     * Return the target address for a PC-relative branch.
347     * Invalid if not a PC-relative branch (i.e. isDirectCtrl()
348     * should be true).
349     */
350    virtual Addr branchTarget(Addr branchPC) const
351    {
352        panic("StaticInst::branchTarget() called on instruction "
353              "that is not a PC-relative branch.");
354    }
355
356    /**
357     * Return the target address for an indirect branch (jump).  The
358     * register value is read from the supplied execution context, so
359     * the result is valid only if the execution context is about to
360     * execute the branch in question.  Invalid if not an indirect
361     * branch (i.e. isIndirectCtrl() should be true).
362     */
363    virtual Addr branchTarget(ExecContext *xc) const
364    {
365        panic("StaticInst::branchTarget() called on instruction "
366              "that is not an indirect branch.");
367    }
368
369    /**
370     * Return true if the instruction is a control transfer, and if so,
371     * return the target address as well.
372     */
373    bool hasBranchTarget(Addr pc, ExecContext *xc, Addr &tgt) const;
374
375    /**
376     * Return string representation of disassembled instruction.
377     * The default version of this function will call the internal
378     * virtual generateDisassembly() function to get the string,
379     * then cache it in #cachedDisassembly.  If the disassembly
380     * should not be cached, this function should be overridden directly.
381     */
382    virtual const std::string &disassemble(Addr pc,
383                                           const SymbolTable *symtab = 0) const
384    {
385        if (!cachedDisassembly)
386            cachedDisassembly =
387                new std::string(generateDisassembly(pc, symtab));
388
389        return *cachedDisassembly;
390    }
391
392    /// Decoded instruction cache type.
393    /// For now we're using a generic hash_map; this seems to work
394    /// pretty well.
395    typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
396
397    /// A cache of decoded instruction objects.
398    static DecodeCache decodeCache;
399
400    /**
401     * Dump some basic stats on the decode cache hash map.
402     * Only gets called if DECODE_CACHE_HASH_STATS is defined.
403     */
404    static void dumpDecodeCacheStats();
405
406    /// Decode a machine instruction.
407    /// @param mach_inst The binary instruction to decode.
408    /// @retval A pointer to the corresponding StaticInst object.
409    //This is defined as inline below.
410    static StaticInstPtr decode(ExtMachInst mach_inst);
411
412    //MIPS Decoder Debug Functions
413    int getOpcode() { return (machInst & 0xFC000000) >> 26 ; }//31..26
414    int getRs() {     return (machInst & 0x03E00000) >> 21; }    //25...21
415    int getRt() {     return (machInst & 0x001F0000) >> 16;  }    //20...16
416    int getRd() {     return (machInst & 0x0000F800) >> 11; }    //15...11
417    int getImm() {  return (machInst & 0x0000FFFF); }    //15...0
418    int getFunction(){  return (machInst & 0x0000003F); }//5...0
419    int getBranch(){  return (machInst & 0x0000FFFF); }//15...0
420    int getJump(){    return (machInst & 0x03FFFFFF); }//5...0
421    int getHint(){    return (machInst & 0x000007C0) >> 6; }  //10...6
422    std::string getName() { return mnemonic; }
423};
424
425typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
426
427/// Reference-counted pointer to a StaticInst object.
428/// This type should be used instead of "StaticInst *" so that
429/// StaticInst objects can be properly reference-counted.
430class StaticInstPtr : public RefCountingPtr<StaticInst>
431{
432  public:
433    /// Constructor.
434    StaticInstPtr()
435        : RefCountingPtr<StaticInst>()
436    {
437    }
438
439    /// Conversion from "StaticInst *".
440    StaticInstPtr(StaticInst *p)
441        : RefCountingPtr<StaticInst>(p)
442    {
443    }
444
445    /// Copy constructor.
446    StaticInstPtr(const StaticInstPtr &r)
447        : RefCountingPtr<StaticInst>(r)
448    {
449    }
450
451    /// Construct directly from machine instruction.
452    /// Calls StaticInst::decode().
453    StaticInstPtr(TheISA::ExtMachInst mach_inst)
454        : RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
455    {
456    }
457
458    /// Convert to pointer to StaticInstBase class.
459    operator const StaticInstBasePtr()
460    {
461        return this->get();
462    }
463};
464
465inline StaticInstPtr
466StaticInst::decode(StaticInst::ExtMachInst mach_inst)
467{
468#ifdef DECODE_CACHE_HASH_STATS
469    // Simple stats on decode hash_map.  Turns out the default
470    // hash function is as good as anything I could come up with.
471    const int dump_every_n = 10000000;
472    static int decodes_til_dump = dump_every_n;
473
474    if (--decodes_til_dump == 0) {
475        dumpDecodeCacheStats();
476        decodes_til_dump = dump_every_n;
477    }
478#endif
479
480    DecodeCache::iterator iter = decodeCache.find(mach_inst);
481    if (iter != decodeCache.end()) {
482        return iter->second;
483    }
484
485    StaticInstPtr si = TheISA::decodeInst(mach_inst);
486    decodeCache[mach_inst] = si;
487    return si;
488}
489
490#endif // __CPU_STATIC_INST_HH__
491