simple_thread.hh revision 7720:65d338a8dba4
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "mem/request.hh"
46#include "sim/byteswap.hh"
47#include "sim/eventq.hh"
48#include "sim/serialize.hh"
49
50class BaseCPU;
51
52#if FULL_SYSTEM
53
54#include "sim/system.hh"
55
56class FunctionProfile;
57class ProfileNode;
58class FunctionalPort;
59class PhysicalPort;
60
61namespace TheISA {
62    namespace Kernel {
63        class Statistics;
64    };
65};
66
67#else // !FULL_SYSTEM
68
69#include "sim/process.hh"
70#include "mem/page_table.hh"
71class TranslatingPort;
72
73#endif // FULL_SYSTEM
74
75/**
76 * The SimpleThread object provides a combination of the ThreadState
77 * object and the ThreadContext interface. It implements the
78 * ThreadContext interface so that a ProxyThreadContext class can be
79 * made using SimpleThread as the template parameter (see
80 * thread_context.hh). It adds to the ThreadState object by adding all
81 * the objects needed for simple functional execution, including a
82 * simple architectural register file, and pointers to the ITB and DTB
83 * in full system mode. For CPU models that do not need more advanced
84 * ways to hold state (i.e. a separate physical register file, or
85 * separate fetch and commit PC's), this SimpleThread class provides
86 * all the necessary state for full architecture-level functional
87 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
88 * examples.
89 */
90
91class SimpleThread : public ThreadState
92{
93  protected:
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    union {
103        FloatReg f[TheISA::NumFloatRegs];
104        FloatRegBits i[TheISA::NumFloatRegs];
105    } floatRegs;
106    TheISA::IntReg intRegs[TheISA::NumIntRegs];
107    TheISA::ISA isa;    // one "instance" of the current ISA.
108
109    TheISA::PCState _pcState;
110
111    /** Did this instruction execute or is it predicated false */
112    bool predicate;
113
114  public:
115    // pointer to CPU associated with this SimpleThread
116    BaseCPU *cpu;
117
118    ProxyThreadContext<SimpleThread> *tc;
119
120    System *system;
121
122    TheISA::TLB *itb;
123    TheISA::TLB *dtb;
124
125    // constructor: initialize SimpleThread from given process structure
126#if FULL_SYSTEM
127    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
128                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
129                 bool use_kernel_stats = true);
130#else
131    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
132                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
133#endif
134
135    SimpleThread();
136
137    virtual ~SimpleThread();
138
139    virtual void takeOverFrom(ThreadContext *oldContext);
140
141    void regStats(const std::string &name);
142
143    void copyTC(ThreadContext *context);
144
145    void copyState(ThreadContext *oldContext);
146
147    void serialize(std::ostream &os);
148    void unserialize(Checkpoint *cp, const std::string &section);
149
150    /***************************************************************
151     *  SimpleThread functions to provide CPU with access to various
152     *  state.
153     **************************************************************/
154
155    /** Returns the pointer to this SimpleThread's ThreadContext. Used
156     *  when a ThreadContext must be passed to objects outside of the
157     *  CPU.
158     */
159    ThreadContext *getTC() { return tc; }
160
161    void demapPage(Addr vaddr, uint64_t asn)
162    {
163        itb->demapPage(vaddr, asn);
164        dtb->demapPage(vaddr, asn);
165    }
166
167    void demapInstPage(Addr vaddr, uint64_t asn)
168    {
169        itb->demapPage(vaddr, asn);
170    }
171
172    void demapDataPage(Addr vaddr, uint64_t asn)
173    {
174        dtb->demapPage(vaddr, asn);
175    }
176
177#if FULL_SYSTEM
178    void dumpFuncProfile();
179
180    Fault hwrei();
181
182    bool simPalCheck(int palFunc);
183
184#endif
185
186    /*******************************************
187     * ThreadContext interface functions.
188     ******************************************/
189
190    BaseCPU *getCpuPtr() { return cpu; }
191
192    TheISA::TLB *getITBPtr() { return itb; }
193
194    TheISA::TLB *getDTBPtr() { return dtb; }
195
196    System *getSystemPtr() { return system; }
197
198#if FULL_SYSTEM
199    FunctionalPort *getPhysPort() { return physPort; }
200
201    /** Return a virtual port. This port cannot be cached locally in an object.
202     * After a CPU switch it may point to the wrong memory object which could
203     * mean stale data.
204     */
205    VirtualPort *getVirtPort() { return virtPort; }
206#endif
207
208    Status status() const { return _status; }
209
210    void setStatus(Status newStatus) { _status = newStatus; }
211
212    /// Set the status to Active.  Optional delay indicates number of
213    /// cycles to wait before beginning execution.
214    void activate(int delay = 1);
215
216    /// Set the status to Suspended.
217    void suspend();
218
219    /// Set the status to Halted.
220    void halt();
221
222    virtual bool misspeculating();
223
224    void copyArchRegs(ThreadContext *tc);
225
226    void clearArchRegs()
227    {
228        _pcState = 0;
229        memset(intRegs, 0, sizeof(intRegs));
230        memset(floatRegs.i, 0, sizeof(floatRegs.i));
231        isa.clear();
232    }
233
234    //
235    // New accessors for new decoder.
236    //
237    uint64_t readIntReg(int reg_idx)
238    {
239        int flatIndex = isa.flattenIntIndex(reg_idx);
240        assert(flatIndex < TheISA::NumIntRegs);
241        uint64_t regVal = intRegs[flatIndex];
242        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
243                reg_idx, flatIndex, regVal);
244        return regVal;
245    }
246
247    FloatReg readFloatReg(int reg_idx)
248    {
249        int flatIndex = isa.flattenFloatIndex(reg_idx);
250        assert(flatIndex < TheISA::NumFloatRegs);
251        FloatReg regVal = floatRegs.f[flatIndex];
252        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
253                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
254        return regVal;
255    }
256
257    FloatRegBits readFloatRegBits(int reg_idx)
258    {
259        int flatIndex = isa.flattenFloatIndex(reg_idx);
260        assert(flatIndex < TheISA::NumFloatRegs);
261        FloatRegBits regVal = floatRegs.i[flatIndex];
262        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
263                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
264        return regVal;
265    }
266
267    void setIntReg(int reg_idx, uint64_t val)
268    {
269        int flatIndex = isa.flattenIntIndex(reg_idx);
270        assert(flatIndex < TheISA::NumIntRegs);
271        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
272                reg_idx, flatIndex, val);
273        intRegs[flatIndex] = val;
274    }
275
276    void setFloatReg(int reg_idx, FloatReg val)
277    {
278        int flatIndex = isa.flattenFloatIndex(reg_idx);
279        assert(flatIndex < TheISA::NumFloatRegs);
280        floatRegs.f[flatIndex] = val;
281        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
282                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
283    }
284
285    void setFloatRegBits(int reg_idx, FloatRegBits val)
286    {
287        int flatIndex = isa.flattenFloatIndex(reg_idx);
288        assert(flatIndex < TheISA::NumFloatRegs);
289        floatRegs.i[flatIndex] = val;
290        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
291                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
292    }
293
294    TheISA::PCState
295    pcState()
296    {
297        return _pcState;
298    }
299
300    void
301    pcState(const TheISA::PCState &val)
302    {
303        _pcState = val;
304    }
305
306    Addr
307    instAddr()
308    {
309        return _pcState.instAddr();
310    }
311
312    Addr
313    nextInstAddr()
314    {
315        return _pcState.nextInstAddr();
316    }
317
318    MicroPC
319    microPC()
320    {
321        return _pcState.microPC();
322    }
323
324    bool readPredicate()
325    {
326        return predicate;
327    }
328
329    void setPredicate(bool val)
330    {
331        predicate = val;
332    }
333
334    MiscReg
335    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
336    {
337        return isa.readMiscRegNoEffect(misc_reg);
338    }
339
340    MiscReg
341    readMiscReg(int misc_reg, ThreadID tid = 0)
342    {
343        return isa.readMiscReg(misc_reg, tc);
344    }
345
346    void
347    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
348    {
349        return isa.setMiscRegNoEffect(misc_reg, val);
350    }
351
352    void
353    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
354    {
355        return isa.setMiscReg(misc_reg, val, tc);
356    }
357
358    int
359    flattenIntIndex(int reg)
360    {
361        return isa.flattenIntIndex(reg);
362    }
363
364    int
365    flattenFloatIndex(int reg)
366    {
367        return isa.flattenFloatIndex(reg);
368    }
369
370    unsigned readStCondFailures() { return storeCondFailures; }
371
372    void setStCondFailures(unsigned sc_failures)
373    { storeCondFailures = sc_failures; }
374
375#if !FULL_SYSTEM
376    void syscall(int64_t callnum)
377    {
378        process->syscall(callnum, tc);
379    }
380#endif
381};
382
383
384// for non-speculative execution context, spec_mode is always false
385inline bool
386SimpleThread::misspeculating()
387{
388    return false;
389}
390
391#endif // __CPU_CPU_EXEC_CONTEXT_HH__
392