simple_thread.hh revision 7597:063f160e8b50
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa.hh"
36#include "arch/isa_traits.hh"
37#include "arch/registers.hh"
38#include "arch/tlb.hh"
39#include "arch/types.hh"
40#include "base/types.hh"
41#include "config/full_system.hh"
42#include "config/the_isa.hh"
43#include "cpu/thread_context.hh"
44#include "cpu/thread_state.hh"
45#include "mem/request.hh"
46#include "sim/byteswap.hh"
47#include "sim/eventq.hh"
48#include "sim/serialize.hh"
49
50class BaseCPU;
51
52#if FULL_SYSTEM
53
54#include "sim/system.hh"
55
56class FunctionProfile;
57class ProfileNode;
58class FunctionalPort;
59class PhysicalPort;
60
61namespace TheISA {
62    namespace Kernel {
63        class Statistics;
64    };
65};
66
67#else // !FULL_SYSTEM
68
69#include "sim/process.hh"
70#include "mem/page_table.hh"
71class TranslatingPort;
72
73#endif // FULL_SYSTEM
74
75/**
76 * The SimpleThread object provides a combination of the ThreadState
77 * object and the ThreadContext interface. It implements the
78 * ThreadContext interface so that a ProxyThreadContext class can be
79 * made using SimpleThread as the template parameter (see
80 * thread_context.hh). It adds to the ThreadState object by adding all
81 * the objects needed for simple functional execution, including a
82 * simple architectural register file, and pointers to the ITB and DTB
83 * in full system mode. For CPU models that do not need more advanced
84 * ways to hold state (i.e. a separate physical register file, or
85 * separate fetch and commit PC's), this SimpleThread class provides
86 * all the necessary state for full architecture-level functional
87 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
88 * examples.
89 */
90
91class SimpleThread : public ThreadState
92{
93  protected:
94    typedef TheISA::MachInst MachInst;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    union {
103        FloatReg f[TheISA::NumFloatRegs];
104        FloatRegBits i[TheISA::NumFloatRegs];
105    } floatRegs;
106    TheISA::IntReg intRegs[TheISA::NumIntRegs];
107    TheISA::ISA isa;    // one "instance" of the current ISA.
108
109    /** The current microcode pc for the currently executing macro
110     * operation.
111     */
112    MicroPC microPC;
113
114    /** The next microcode pc for the currently executing macro
115     * operation.
116     */
117    MicroPC nextMicroPC;
118
119    /** The current pc.
120     */
121    Addr PC;
122
123    /** The next pc.
124     */
125    Addr nextPC;
126
127    /** The next next pc.
128     */
129    Addr nextNPC;
130
131    /** Did this instruction execute or is it predicated false */
132    bool predicate;
133
134  public:
135    // pointer to CPU associated with this SimpleThread
136    BaseCPU *cpu;
137
138    ProxyThreadContext<SimpleThread> *tc;
139
140    System *system;
141
142    TheISA::TLB *itb;
143    TheISA::TLB *dtb;
144
145    // constructor: initialize SimpleThread from given process structure
146#if FULL_SYSTEM
147    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
148                 TheISA::TLB *_itb, TheISA::TLB *_dtb,
149                 bool use_kernel_stats = true);
150#else
151    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
152                 TheISA::TLB *_itb, TheISA::TLB *_dtb);
153#endif
154
155    SimpleThread();
156
157    virtual ~SimpleThread();
158
159    virtual void takeOverFrom(ThreadContext *oldContext);
160
161    void regStats(const std::string &name);
162
163    void copyTC(ThreadContext *context);
164
165    void copyState(ThreadContext *oldContext);
166
167    void serialize(std::ostream &os);
168    void unserialize(Checkpoint *cp, const std::string &section);
169
170    /***************************************************************
171     *  SimpleThread functions to provide CPU with access to various
172     *  state.
173     **************************************************************/
174
175    /** Returns the pointer to this SimpleThread's ThreadContext. Used
176     *  when a ThreadContext must be passed to objects outside of the
177     *  CPU.
178     */
179    ThreadContext *getTC() { return tc; }
180
181    void demapPage(Addr vaddr, uint64_t asn)
182    {
183        itb->demapPage(vaddr, asn);
184        dtb->demapPage(vaddr, asn);
185    }
186
187    void demapInstPage(Addr vaddr, uint64_t asn)
188    {
189        itb->demapPage(vaddr, asn);
190    }
191
192    void demapDataPage(Addr vaddr, uint64_t asn)
193    {
194        dtb->demapPage(vaddr, asn);
195    }
196
197#if FULL_SYSTEM
198    void dumpFuncProfile();
199
200    Fault hwrei();
201
202    bool simPalCheck(int palFunc);
203
204#endif
205
206    /*******************************************
207     * ThreadContext interface functions.
208     ******************************************/
209
210    BaseCPU *getCpuPtr() { return cpu; }
211
212    TheISA::TLB *getITBPtr() { return itb; }
213
214    TheISA::TLB *getDTBPtr() { return dtb; }
215
216    System *getSystemPtr() { return system; }
217
218#if FULL_SYSTEM
219    FunctionalPort *getPhysPort() { return physPort; }
220
221    /** Return a virtual port. This port cannot be cached locally in an object.
222     * After a CPU switch it may point to the wrong memory object which could
223     * mean stale data.
224     */
225    VirtualPort *getVirtPort() { return virtPort; }
226#endif
227
228    Status status() const { return _status; }
229
230    void setStatus(Status newStatus) { _status = newStatus; }
231
232    /// Set the status to Active.  Optional delay indicates number of
233    /// cycles to wait before beginning execution.
234    void activate(int delay = 1);
235
236    /// Set the status to Suspended.
237    void suspend();
238
239    /// Set the status to Halted.
240    void halt();
241
242    virtual bool misspeculating();
243
244    Fault instRead(RequestPtr &req)
245    {
246        panic("instRead not implemented");
247        // return funcPhysMem->read(req, inst);
248        return NoFault;
249    }
250
251    void copyArchRegs(ThreadContext *tc);
252
253    void clearArchRegs()
254    {
255        microPC = 0;
256        nextMicroPC = 1;
257        PC = nextPC = nextNPC = 0;
258        memset(intRegs, 0, sizeof(intRegs));
259        memset(floatRegs.i, 0, sizeof(floatRegs.i));
260        isa.clear();
261    }
262
263    //
264    // New accessors for new decoder.
265    //
266    uint64_t readIntReg(int reg_idx)
267    {
268        int flatIndex = isa.flattenIntIndex(reg_idx);
269        assert(flatIndex < TheISA::NumIntRegs);
270        uint64_t regVal = intRegs[flatIndex];
271        DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal);
272        return regVal;
273    }
274
275    FloatReg readFloatReg(int reg_idx)
276    {
277        int flatIndex = isa.flattenFloatIndex(reg_idx);
278        assert(flatIndex < TheISA::NumFloatRegs);
279        FloatReg regVal = floatRegs.f[flatIndex];
280        DPRINTF(FloatRegs, "Reading float reg %d as %f, %#x.\n",
281                reg_idx, regVal, floatRegs.i[flatIndex]);
282        return regVal;
283    }
284
285    FloatRegBits readFloatRegBits(int reg_idx)
286    {
287        int flatIndex = isa.flattenFloatIndex(reg_idx);
288        assert(flatIndex < TheISA::NumFloatRegs);
289        FloatRegBits regVal = floatRegs.i[flatIndex];
290        DPRINTF(FloatRegs, "Reading float reg %d bits as %#x, %f.\n",
291                reg_idx, regVal, floatRegs.f[flatIndex]);
292        return regVal;
293    }
294
295    void setIntReg(int reg_idx, uint64_t val)
296    {
297        int flatIndex = isa.flattenIntIndex(reg_idx);
298        assert(flatIndex < TheISA::NumIntRegs);
299        DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val);
300        intRegs[flatIndex] = val;
301    }
302
303    void setFloatReg(int reg_idx, FloatReg val)
304    {
305        int flatIndex = isa.flattenFloatIndex(reg_idx);
306        assert(flatIndex < TheISA::NumFloatRegs);
307        floatRegs.f[flatIndex] = val;
308        DPRINTF(FloatRegs, "Setting float reg %d to %f, %#x.\n",
309                reg_idx, val, floatRegs.i[flatIndex]);
310    }
311
312    void setFloatRegBits(int reg_idx, FloatRegBits val)
313    {
314        int flatIndex = isa.flattenFloatIndex(reg_idx);
315        assert(flatIndex < TheISA::NumFloatRegs);
316        floatRegs.i[flatIndex] = val;
317        DPRINTF(FloatRegs, "Setting float reg %d bits to %#x, %#f.\n",
318                reg_idx, val, floatRegs.f[flatIndex]);
319    }
320
321    uint64_t readPC()
322    {
323        return PC;
324    }
325
326    void setPC(uint64_t val)
327    {
328        PC = val;
329    }
330
331    uint64_t readMicroPC()
332    {
333        return microPC;
334    }
335
336    void setMicroPC(uint64_t val)
337    {
338        microPC = val;
339    }
340
341    uint64_t readNextPC()
342    {
343        return nextPC;
344    }
345
346    void setNextPC(uint64_t val)
347    {
348        nextPC = val;
349    }
350
351    uint64_t readNextMicroPC()
352    {
353        return nextMicroPC;
354    }
355
356    void setNextMicroPC(uint64_t val)
357    {
358        nextMicroPC = val;
359    }
360
361    uint64_t readNextNPC()
362    {
363#if ISA_HAS_DELAY_SLOT
364        return nextNPC;
365#else
366        return nextPC + sizeof(TheISA::MachInst);
367#endif
368    }
369
370    void setNextNPC(uint64_t val)
371    {
372#if ISA_HAS_DELAY_SLOT
373        nextNPC = val;
374#endif
375    }
376
377    bool readPredicate()
378    {
379        return predicate;
380    }
381
382    void setPredicate(bool val)
383    {
384        predicate = val;
385    }
386
387    MiscReg
388    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
389    {
390        return isa.readMiscRegNoEffect(misc_reg);
391    }
392
393    MiscReg
394    readMiscReg(int misc_reg, ThreadID tid = 0)
395    {
396        return isa.readMiscReg(misc_reg, tc);
397    }
398
399    void
400    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
401    {
402        return isa.setMiscRegNoEffect(misc_reg, val);
403    }
404
405    void
406    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
407    {
408        return isa.setMiscReg(misc_reg, val, tc);
409    }
410
411    int
412    flattenIntIndex(int reg)
413    {
414        return isa.flattenIntIndex(reg);
415    }
416
417    int
418    flattenFloatIndex(int reg)
419    {
420        return isa.flattenFloatIndex(reg);
421    }
422
423    unsigned readStCondFailures() { return storeCondFailures; }
424
425    void setStCondFailures(unsigned sc_failures)
426    { storeCondFailures = sc_failures; }
427
428#if !FULL_SYSTEM
429    void syscall(int64_t callnum)
430    {
431        process->syscall(callnum, tc);
432    }
433#endif
434};
435
436
437// for non-speculative execution context, spec_mode is always false
438inline bool
439SimpleThread::misspeculating()
440{
441    return false;
442}
443
444#endif // __CPU_CPU_EXEC_CONTEXT_HH__
445