simple_thread.hh revision 7400
1/* 2 * Copyright (c) 2001-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 * Nathan Binkert 30 */ 31 32#ifndef __CPU_SIMPLE_THREAD_HH__ 33#define __CPU_SIMPLE_THREAD_HH__ 34 35#include "arch/isa.hh" 36#include "arch/isa_traits.hh" 37#include "arch/registers.hh" 38#include "arch/tlb.hh" 39#include "arch/types.hh" 40#include "base/types.hh" 41#include "config/full_system.hh" 42#include "config/the_isa.hh" 43#include "cpu/thread_context.hh" 44#include "cpu/thread_state.hh" 45#include "mem/request.hh" 46#include "sim/byteswap.hh" 47#include "sim/eventq.hh" 48#include "sim/serialize.hh" 49 50class BaseCPU; 51 52#if FULL_SYSTEM 53 54#include "sim/system.hh" 55 56class FunctionProfile; 57class ProfileNode; 58class FunctionalPort; 59class PhysicalPort; 60 61namespace TheISA { 62 namespace Kernel { 63 class Statistics; 64 }; 65}; 66 67#else // !FULL_SYSTEM 68 69#include "sim/process.hh" 70#include "mem/page_table.hh" 71class TranslatingPort; 72 73#endif // FULL_SYSTEM 74 75/** 76 * The SimpleThread object provides a combination of the ThreadState 77 * object and the ThreadContext interface. It implements the 78 * ThreadContext interface so that a ProxyThreadContext class can be 79 * made using SimpleThread as the template parameter (see 80 * thread_context.hh). It adds to the ThreadState object by adding all 81 * the objects needed for simple functional execution, including a 82 * simple architectural register file, and pointers to the ITB and DTB 83 * in full system mode. For CPU models that do not need more advanced 84 * ways to hold state (i.e. a separate physical register file, or 85 * separate fetch and commit PC's), this SimpleThread class provides 86 * all the necessary state for full architecture-level functional 87 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for 88 * examples. 89 */ 90 91class SimpleThread : public ThreadState 92{ 93 protected: 94 typedef TheISA::MachInst MachInst; 95 typedef TheISA::MiscReg MiscReg; 96 typedef TheISA::FloatReg FloatReg; 97 typedef TheISA::FloatRegBits FloatRegBits; 98 public: 99 typedef ThreadContext::Status Status; 100 101 protected: 102 union { 103 FloatReg f[TheISA::NumFloatRegs]; 104 FloatRegBits i[TheISA::NumFloatRegs]; 105 } floatRegs; 106 TheISA::IntReg intRegs[TheISA::NumIntRegs]; 107 TheISA::ISA isa; // one "instance" of the current ISA. 108 109 /** The current microcode pc for the currently executing macro 110 * operation. 111 */ 112 MicroPC microPC; 113 114 /** The next microcode pc for the currently executing macro 115 * operation. 116 */ 117 MicroPC nextMicroPC; 118 119 /** The current pc. 120 */ 121 Addr PC; 122 123 /** The next pc. 124 */ 125 Addr nextPC; 126 127 /** The next next pc. 128 */ 129 Addr nextNPC; 130 131 public: 132 // pointer to CPU associated with this SimpleThread 133 BaseCPU *cpu; 134 135 ProxyThreadContext<SimpleThread> *tc; 136 137 System *system; 138 139 TheISA::TLB *itb; 140 TheISA::TLB *dtb; 141 142 // constructor: initialize SimpleThread from given process structure 143#if FULL_SYSTEM 144 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, 145 TheISA::TLB *_itb, TheISA::TLB *_dtb, 146 bool use_kernel_stats = true); 147#else 148 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, 149 TheISA::TLB *_itb, TheISA::TLB *_dtb); 150#endif 151 152 SimpleThread(); 153 154 virtual ~SimpleThread(); 155 156 virtual void takeOverFrom(ThreadContext *oldContext); 157 158 void regStats(const std::string &name); 159 160 void copyTC(ThreadContext *context); 161 162 void copyState(ThreadContext *oldContext); 163 164 void serialize(std::ostream &os); 165 void unserialize(Checkpoint *cp, const std::string §ion); 166 167 /*************************************************************** 168 * SimpleThread functions to provide CPU with access to various 169 * state. 170 **************************************************************/ 171 172 /** Returns the pointer to this SimpleThread's ThreadContext. Used 173 * when a ThreadContext must be passed to objects outside of the 174 * CPU. 175 */ 176 ThreadContext *getTC() { return tc; } 177 178 void demapPage(Addr vaddr, uint64_t asn) 179 { 180 itb->demapPage(vaddr, asn); 181 dtb->demapPage(vaddr, asn); 182 } 183 184 void demapInstPage(Addr vaddr, uint64_t asn) 185 { 186 itb->demapPage(vaddr, asn); 187 } 188 189 void demapDataPage(Addr vaddr, uint64_t asn) 190 { 191 dtb->demapPage(vaddr, asn); 192 } 193 194#if FULL_SYSTEM 195 void dumpFuncProfile(); 196 197 Fault hwrei(); 198 199 bool simPalCheck(int palFunc); 200 201#endif 202 203 /******************************************* 204 * ThreadContext interface functions. 205 ******************************************/ 206 207 BaseCPU *getCpuPtr() { return cpu; } 208 209 TheISA::TLB *getITBPtr() { return itb; } 210 211 TheISA::TLB *getDTBPtr() { return dtb; } 212 213 System *getSystemPtr() { return system; } 214 215#if FULL_SYSTEM 216 FunctionalPort *getPhysPort() { return physPort; } 217 218 /** Return a virtual port. This port cannot be cached locally in an object. 219 * After a CPU switch it may point to the wrong memory object which could 220 * mean stale data. 221 */ 222 VirtualPort *getVirtPort() { return virtPort; } 223#endif 224 225 Status status() const { return _status; } 226 227 void setStatus(Status newStatus) { _status = newStatus; } 228 229 /// Set the status to Active. Optional delay indicates number of 230 /// cycles to wait before beginning execution. 231 void activate(int delay = 1); 232 233 /// Set the status to Suspended. 234 void suspend(); 235 236 /// Set the status to Halted. 237 void halt(); 238 239 virtual bool misspeculating(); 240 241 Fault instRead(RequestPtr &req) 242 { 243 panic("instRead not implemented"); 244 // return funcPhysMem->read(req, inst); 245 return NoFault; 246 } 247 248 void copyArchRegs(ThreadContext *tc); 249 250 void clearArchRegs() 251 { 252 microPC = 0; 253 nextMicroPC = 1; 254 PC = nextPC = nextNPC = 0; 255 memset(intRegs, 0, sizeof(intRegs)); 256 memset(floatRegs.i, 0, sizeof(floatRegs.i)); 257 isa.clear(); 258 } 259 260 // 261 // New accessors for new decoder. 262 // 263 uint64_t readIntReg(int reg_idx) 264 { 265 int flatIndex = isa.flattenIntIndex(reg_idx); 266 assert(flatIndex < TheISA::NumIntRegs); 267 uint64_t regVal = intRegs[flatIndex]; 268 DPRINTF(IntRegs, "Reading int reg %d as %#x.\n", reg_idx, regVal); 269 return regVal; 270 } 271 272 FloatReg readFloatReg(int reg_idx) 273 { 274 int flatIndex = isa.flattenFloatIndex(reg_idx); 275 assert(flatIndex < TheISA::NumFloatRegs); 276 FloatReg regVal = floatRegs.f[flatIndex]; 277 DPRINTF(FloatRegs, "Reading float reg %d as %f, %#x.\n", 278 reg_idx, regVal, floatRegs.i[flatIndex]); 279 return regVal; 280 } 281 282 FloatRegBits readFloatRegBits(int reg_idx) 283 { 284 int flatIndex = isa.flattenFloatIndex(reg_idx); 285 assert(flatIndex < TheISA::NumFloatRegs); 286 FloatRegBits regVal = floatRegs.i[flatIndex]; 287 DPRINTF(FloatRegs, "Reading float reg %d bits as %#x, %f.\n", 288 reg_idx, regVal, floatRegs.f[flatIndex]); 289 return regVal; 290 } 291 292 void setIntReg(int reg_idx, uint64_t val) 293 { 294 int flatIndex = isa.flattenIntIndex(reg_idx); 295 assert(flatIndex < TheISA::NumIntRegs); 296 DPRINTF(IntRegs, "Setting int reg %d to %#x.\n", reg_idx, val); 297 intRegs[flatIndex] = val; 298 } 299 300 void setFloatReg(int reg_idx, FloatReg val) 301 { 302 int flatIndex = isa.flattenFloatIndex(reg_idx); 303 assert(flatIndex < TheISA::NumFloatRegs); 304 floatRegs.f[flatIndex] = val; 305 DPRINTF(FloatRegs, "Setting float reg %d to %f, %#x.\n", 306 reg_idx, val, floatRegs.i[flatIndex]); 307 } 308 309 void setFloatRegBits(int reg_idx, FloatRegBits val) 310 { 311 int flatIndex = isa.flattenFloatIndex(reg_idx); 312 assert(flatIndex < TheISA::NumFloatRegs); 313 floatRegs.i[flatIndex] = val; 314 DPRINTF(FloatRegs, "Setting float reg %d bits to %#x, %#f.\n", 315 reg_idx, val, floatRegs.f[flatIndex]); 316 } 317 318 uint64_t readPC() 319 { 320 return PC; 321 } 322 323 void setPC(uint64_t val) 324 { 325 PC = val; 326 } 327 328 uint64_t readMicroPC() 329 { 330 return microPC; 331 } 332 333 void setMicroPC(uint64_t val) 334 { 335 microPC = val; 336 } 337 338 uint64_t readNextPC() 339 { 340 return nextPC; 341 } 342 343 void setNextPC(uint64_t val) 344 { 345 nextPC = val; 346 } 347 348 uint64_t readNextMicroPC() 349 { 350 return nextMicroPC; 351 } 352 353 void setNextMicroPC(uint64_t val) 354 { 355 nextMicroPC = val; 356 } 357 358 uint64_t readNextNPC() 359 { 360#if ISA_HAS_DELAY_SLOT 361 return nextNPC; 362#else 363 return nextPC + sizeof(TheISA::MachInst); 364#endif 365 } 366 367 void setNextNPC(uint64_t val) 368 { 369#if ISA_HAS_DELAY_SLOT 370 nextNPC = val; 371#endif 372 } 373 374 MiscReg 375 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) 376 { 377 return isa.readMiscRegNoEffect(misc_reg); 378 } 379 380 MiscReg 381 readMiscReg(int misc_reg, ThreadID tid = 0) 382 { 383 return isa.readMiscReg(misc_reg, tc); 384 } 385 386 void 387 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) 388 { 389 return isa.setMiscRegNoEffect(misc_reg, val); 390 } 391 392 void 393 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) 394 { 395 return isa.setMiscReg(misc_reg, val, tc); 396 } 397 398 int 399 flattenIntIndex(int reg) 400 { 401 return isa.flattenIntIndex(reg); 402 } 403 404 int 405 flattenFloatIndex(int reg) 406 { 407 return isa.flattenFloatIndex(reg); 408 } 409 410 unsigned readStCondFailures() { return storeCondFailures; } 411 412 void setStCondFailures(unsigned sc_failures) 413 { storeCondFailures = sc_failures; } 414 415#if !FULL_SYSTEM 416 void syscall(int64_t callnum) 417 { 418 process->syscall(callnum, tc); 419 } 420#endif 421}; 422 423 424// for non-speculative execution context, spec_mode is always false 425inline bool 426SimpleThread::misspeculating() 427{ 428 return false; 429} 430 431#endif // __CPU_CPU_EXEC_CONTEXT_HH__ 432