simple_thread.hh revision 6323
1/* 2 * Copyright (c) 2001-2006 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Steve Reinhardt 29 * Nathan Binkert 30 */ 31 32#ifndef __CPU_SIMPLE_THREAD_HH__ 33#define __CPU_SIMPLE_THREAD_HH__ 34 35#include "arch/isa.hh" 36#include "arch/isa_traits.hh" 37#include "arch/regfile.hh" 38#include "arch/tlb.hh" 39#include "arch/types.hh" 40#include "base/types.hh" 41#include "config/full_system.hh" 42#include "cpu/thread_context.hh" 43#include "cpu/thread_state.hh" 44#include "mem/request.hh" 45#include "sim/byteswap.hh" 46#include "sim/eventq.hh" 47#include "sim/serialize.hh" 48 49class BaseCPU; 50 51#if FULL_SYSTEM 52 53#include "sim/system.hh" 54 55class FunctionProfile; 56class ProfileNode; 57class FunctionalPort; 58class PhysicalPort; 59 60namespace TheISA { 61 namespace Kernel { 62 class Statistics; 63 }; 64}; 65 66#else // !FULL_SYSTEM 67 68#include "sim/process.hh" 69#include "mem/page_table.hh" 70class TranslatingPort; 71 72#endif // FULL_SYSTEM 73 74/** 75 * The SimpleThread object provides a combination of the ThreadState 76 * object and the ThreadContext interface. It implements the 77 * ThreadContext interface so that a ProxyThreadContext class can be 78 * made using SimpleThread as the template parameter (see 79 * thread_context.hh). It adds to the ThreadState object by adding all 80 * the objects needed for simple functional execution, including a 81 * simple architectural register file, and pointers to the ITB and DTB 82 * in full system mode. For CPU models that do not need more advanced 83 * ways to hold state (i.e. a separate physical register file, or 84 * separate fetch and commit PC's), this SimpleThread class provides 85 * all the necessary state for full architecture-level functional 86 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for 87 * examples. 88 */ 89 90class SimpleThread : public ThreadState 91{ 92 protected: 93 typedef TheISA::RegFile RegFile; 94 typedef TheISA::MachInst MachInst; 95 typedef TheISA::MiscReg MiscReg; 96 typedef TheISA::FloatReg FloatReg; 97 typedef TheISA::FloatRegBits FloatRegBits; 98 public: 99 typedef ThreadContext::Status Status; 100 101 protected: 102 RegFile regs; // correct-path register context 103 union { 104 FloatReg f[TheISA::NumFloatRegs]; 105 FloatRegBits i[TheISA::NumFloatRegs]; 106 } floatRegs; 107 TheISA::IntReg intRegs[TheISA::NumIntRegs]; 108 TheISA::ISA isa; // one "instance" of the current ISA. 109 110 public: 111 // pointer to CPU associated with this SimpleThread 112 BaseCPU *cpu; 113 114 ProxyThreadContext<SimpleThread> *tc; 115 116 System *system; 117 118 TheISA::TLB *itb; 119 TheISA::TLB *dtb; 120 121 // constructor: initialize SimpleThread from given process structure 122#if FULL_SYSTEM 123 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, 124 TheISA::TLB *_itb, TheISA::TLB *_dtb, 125 bool use_kernel_stats = true); 126#else 127 SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process, 128 TheISA::TLB *_itb, TheISA::TLB *_dtb, int _asid); 129#endif 130 131 SimpleThread(); 132 133 virtual ~SimpleThread(); 134 135 virtual void takeOverFrom(ThreadContext *oldContext); 136 137 void regStats(const std::string &name); 138 139 void copyTC(ThreadContext *context); 140 141 void copyState(ThreadContext *oldContext); 142 143 void serialize(std::ostream &os); 144 void unserialize(Checkpoint *cp, const std::string §ion); 145 146 /*************************************************************** 147 * SimpleThread functions to provide CPU with access to various 148 * state. 149 **************************************************************/ 150 151 /** Returns the pointer to this SimpleThread's ThreadContext. Used 152 * when a ThreadContext must be passed to objects outside of the 153 * CPU. 154 */ 155 ThreadContext *getTC() { return tc; } 156 157 void demapPage(Addr vaddr, uint64_t asn) 158 { 159 itb->demapPage(vaddr, asn); 160 dtb->demapPage(vaddr, asn); 161 } 162 163 void demapInstPage(Addr vaddr, uint64_t asn) 164 { 165 itb->demapPage(vaddr, asn); 166 } 167 168 void demapDataPage(Addr vaddr, uint64_t asn) 169 { 170 dtb->demapPage(vaddr, asn); 171 } 172 173#if FULL_SYSTEM 174 int getInstAsid() { return isa.instAsid(); } 175 int getDataAsid() { return isa.dataAsid(); } 176 177 void dumpFuncProfile(); 178 179 Fault hwrei(); 180 181 bool simPalCheck(int palFunc); 182 183#endif 184 185 /******************************************* 186 * ThreadContext interface functions. 187 ******************************************/ 188 189 BaseCPU *getCpuPtr() { return cpu; } 190 191 TheISA::TLB *getITBPtr() { return itb; } 192 193 TheISA::TLB *getDTBPtr() { return dtb; } 194 195 System *getSystemPtr() { return system; } 196 197#if FULL_SYSTEM 198 FunctionalPort *getPhysPort() { return physPort; } 199 200 /** Return a virtual port. This port cannot be cached locally in an object. 201 * After a CPU switch it may point to the wrong memory object which could 202 * mean stale data. 203 */ 204 VirtualPort *getVirtPort() { return virtPort; } 205#endif 206 207 Status status() const { return _status; } 208 209 void setStatus(Status newStatus) { _status = newStatus; } 210 211 /// Set the status to Active. Optional delay indicates number of 212 /// cycles to wait before beginning execution. 213 void activate(int delay = 1); 214 215 /// Set the status to Suspended. 216 void suspend(); 217 218 /// Set the status to Halted. 219 void halt(); 220 221 virtual bool misspeculating(); 222 223 Fault instRead(RequestPtr &req) 224 { 225 panic("instRead not implemented"); 226 // return funcPhysMem->read(req, inst); 227 return NoFault; 228 } 229 230 void copyArchRegs(ThreadContext *tc); 231 232 void clearArchRegs() 233 { 234 regs.clear(); 235 memset(intRegs, 0, sizeof(intRegs)); 236 memset(floatRegs.i, 0, sizeof(floatRegs.i)); 237 } 238 239 // 240 // New accessors for new decoder. 241 // 242 uint64_t readIntReg(int reg_idx) 243 { 244 int flatIndex = isa.flattenIntIndex(reg_idx); 245 assert(flatIndex < TheISA::NumIntRegs); 246 return intRegs[flatIndex]; 247 } 248 249 FloatReg readFloatReg(int reg_idx) 250 { 251 int flatIndex = isa.flattenFloatIndex(reg_idx); 252 assert(flatIndex < TheISA::NumFloatRegs); 253 return floatRegs.f[flatIndex]; 254 } 255 256 FloatRegBits readFloatRegBits(int reg_idx) 257 { 258 int flatIndex = isa.flattenFloatIndex(reg_idx); 259 assert(flatIndex < TheISA::NumFloatRegs); 260 return floatRegs.i[flatIndex]; 261 } 262 263 void setIntReg(int reg_idx, uint64_t val) 264 { 265 int flatIndex = isa.flattenIntIndex(reg_idx); 266 assert(flatIndex < TheISA::NumIntRegs); 267 intRegs[flatIndex] = val; 268 } 269 270 void setFloatReg(int reg_idx, FloatReg val) 271 { 272 int flatIndex = isa.flattenFloatIndex(reg_idx); 273 assert(flatIndex < TheISA::NumFloatRegs); 274 floatRegs.f[flatIndex] = val; 275 } 276 277 void setFloatRegBits(int reg_idx, FloatRegBits val) 278 { 279 int flatIndex = isa.flattenFloatIndex(reg_idx); 280 assert(flatIndex < TheISA::NumFloatRegs); 281 floatRegs.i[flatIndex] = val; 282 } 283 284 uint64_t readPC() 285 { 286 return regs.readPC(); 287 } 288 289 void setPC(uint64_t val) 290 { 291 regs.setPC(val); 292 } 293 294 uint64_t readMicroPC() 295 { 296 return microPC; 297 } 298 299 void setMicroPC(uint64_t val) 300 { 301 microPC = val; 302 } 303 304 uint64_t readNextPC() 305 { 306 return regs.readNextPC(); 307 } 308 309 void setNextPC(uint64_t val) 310 { 311 regs.setNextPC(val); 312 } 313 314 uint64_t readNextMicroPC() 315 { 316 return nextMicroPC; 317 } 318 319 void setNextMicroPC(uint64_t val) 320 { 321 nextMicroPC = val; 322 } 323 324 uint64_t readNextNPC() 325 { 326 return regs.readNextNPC(); 327 } 328 329 void setNextNPC(uint64_t val) 330 { 331 regs.setNextNPC(val); 332 } 333 334 MiscReg 335 readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) 336 { 337 return isa.readMiscRegNoEffect(misc_reg); 338 } 339 340 MiscReg 341 readMiscReg(int misc_reg, ThreadID tid = 0) 342 { 343 return isa.readMiscReg(misc_reg, tc); 344 } 345 346 void 347 setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0) 348 { 349 return isa.setMiscRegNoEffect(misc_reg, val); 350 } 351 352 void 353 setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0) 354 { 355 return isa.setMiscReg(misc_reg, val, tc); 356 } 357 358 int 359 flattenIntIndex(int reg) 360 { 361 return isa.flattenIntIndex(reg); 362 } 363 364 int 365 flattenFloatIndex(int reg) 366 { 367 return isa.flattenFloatIndex(reg); 368 } 369 370 unsigned readStCondFailures() { return storeCondFailures; } 371 372 void setStCondFailures(unsigned sc_failures) 373 { storeCondFailures = sc_failures; } 374 375#if !FULL_SYSTEM 376 void syscall(int64_t callnum) 377 { 378 process->syscall(callnum, tc); 379 } 380#endif 381}; 382 383 384// for non-speculative execution context, spec_mode is always false 385inline bool 386SimpleThread::misspeculating() 387{ 388 return false; 389} 390 391#endif // __CPU_CPU_EXEC_CONTEXT_HH__ 392