simple_thread.hh revision 5890:bdef71accd68
1/*
2 * Copyright (c) 2001-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Nathan Binkert
30 */
31
32#ifndef __CPU_SIMPLE_THREAD_HH__
33#define __CPU_SIMPLE_THREAD_HH__
34
35#include "arch/isa_traits.hh"
36#include "arch/regfile.hh"
37#include "arch/syscallreturn.hh"
38#include "arch/tlb.hh"
39#include "config/full_system.hh"
40#include "cpu/thread_context.hh"
41#include "cpu/thread_state.hh"
42#include "mem/request.hh"
43#include "sim/byteswap.hh"
44#include "sim/eventq.hh"
45#include "sim/host.hh"
46#include "sim/serialize.hh"
47
48class BaseCPU;
49
50#if FULL_SYSTEM
51
52#include "sim/system.hh"
53
54class FunctionProfile;
55class ProfileNode;
56class FunctionalPort;
57class PhysicalPort;
58
59namespace TheISA {
60    namespace Kernel {
61        class Statistics;
62    };
63};
64
65#else // !FULL_SYSTEM
66
67#include "sim/process.hh"
68#include "mem/page_table.hh"
69class TranslatingPort;
70
71#endif // FULL_SYSTEM
72
73/**
74 * The SimpleThread object provides a combination of the ThreadState
75 * object and the ThreadContext interface. It implements the
76 * ThreadContext interface so that a ProxyThreadContext class can be
77 * made using SimpleThread as the template parameter (see
78 * thread_context.hh). It adds to the ThreadState object by adding all
79 * the objects needed for simple functional execution, including a
80 * simple architectural register file, and pointers to the ITB and DTB
81 * in full system mode. For CPU models that do not need more advanced
82 * ways to hold state (i.e. a separate physical register file, or
83 * separate fetch and commit PC's), this SimpleThread class provides
84 * all the necessary state for full architecture-level functional
85 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
86 * examples.
87 */
88
89class SimpleThread : public ThreadState
90{
91  protected:
92    typedef TheISA::RegFile RegFile;
93    typedef TheISA::MachInst MachInst;
94    typedef TheISA::MiscRegFile MiscRegFile;
95    typedef TheISA::MiscReg MiscReg;
96    typedef TheISA::FloatReg FloatReg;
97    typedef TheISA::FloatRegBits FloatRegBits;
98  public:
99    typedef ThreadContext::Status Status;
100
101  protected:
102    RegFile regs;       // correct-path register context
103
104  public:
105    // pointer to CPU associated with this SimpleThread
106    BaseCPU *cpu;
107
108    ProxyThreadContext<SimpleThread> *tc;
109
110    System *system;
111
112    TheISA::ITB *itb;
113    TheISA::DTB *dtb;
114
115    // constructor: initialize SimpleThread from given process structure
116#if FULL_SYSTEM
117    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
118                 TheISA::ITB *_itb, TheISA::DTB *_dtb,
119                 bool use_kernel_stats = true);
120#else
121    SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
122                 TheISA::ITB *_itb, TheISA::DTB *_dtb, int _asid);
123#endif
124
125    SimpleThread();
126
127    virtual ~SimpleThread();
128
129    virtual void takeOverFrom(ThreadContext *oldContext);
130
131    void regStats(const std::string &name);
132
133    void copyTC(ThreadContext *context);
134
135    void copyState(ThreadContext *oldContext);
136
137    void serialize(std::ostream &os);
138    void unserialize(Checkpoint *cp, const std::string &section);
139
140    /***************************************************************
141     *  SimpleThread functions to provide CPU with access to various
142     *  state, and to provide address translation methods.
143     **************************************************************/
144
145    /** Returns the pointer to this SimpleThread's ThreadContext. Used
146     *  when a ThreadContext must be passed to objects outside of the
147     *  CPU.
148     */
149    ThreadContext *getTC() { return tc; }
150
151    void demapPage(Addr vaddr, uint64_t asn)
152    {
153        itb->demapPage(vaddr, asn);
154        dtb->demapPage(vaddr, asn);
155    }
156
157    void demapInstPage(Addr vaddr, uint64_t asn)
158    {
159        itb->demapPage(vaddr, asn);
160    }
161
162    void demapDataPage(Addr vaddr, uint64_t asn)
163    {
164        dtb->demapPage(vaddr, asn);
165    }
166
167#if FULL_SYSTEM
168    int getInstAsid() { return regs.instAsid(); }
169    int getDataAsid() { return regs.dataAsid(); }
170
171    void dumpFuncProfile();
172
173    Fault hwrei();
174
175    bool simPalCheck(int palFunc);
176
177#endif
178
179    /*******************************************
180     * ThreadContext interface functions.
181     ******************************************/
182
183    BaseCPU *getCpuPtr() { return cpu; }
184
185    TheISA::ITB *getITBPtr() { return itb; }
186
187    TheISA::DTB *getDTBPtr() { return dtb; }
188
189    System *getSystemPtr() { return system; }
190
191#if FULL_SYSTEM
192    FunctionalPort *getPhysPort() { return physPort; }
193
194    /** Return a virtual port. This port cannot be cached locally in an object.
195     * After a CPU switch it may point to the wrong memory object which could
196     * mean stale data.
197     */
198    VirtualPort *getVirtPort() { return virtPort; }
199#endif
200
201    Status status() const { return _status; }
202
203    void setStatus(Status newStatus) { _status = newStatus; }
204
205    /// Set the status to Active.  Optional delay indicates number of
206    /// cycles to wait before beginning execution.
207    void activate(int delay = 1);
208
209    /// Set the status to Suspended.
210    void suspend();
211
212    /// Set the status to Unallocated.
213    void deallocate();
214
215    /// Set the status to Halted.
216    void halt();
217
218    virtual bool misspeculating();
219
220    Fault instRead(RequestPtr &req)
221    {
222        panic("instRead not implemented");
223        // return funcPhysMem->read(req, inst);
224        return NoFault;
225    }
226
227    void copyArchRegs(ThreadContext *tc);
228
229    void clearArchRegs() { regs.clear(); }
230
231    //
232    // New accessors for new decoder.
233    //
234    uint64_t readIntReg(int reg_idx)
235    {
236        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
237        return regs.readIntReg(flatIndex);
238    }
239
240    FloatReg readFloatReg(int reg_idx, int width)
241    {
242        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
243        return regs.readFloatReg(flatIndex, width);
244    }
245
246    FloatReg readFloatReg(int reg_idx)
247    {
248        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
249        return regs.readFloatReg(flatIndex);
250    }
251
252    FloatRegBits readFloatRegBits(int reg_idx, int width)
253    {
254        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
255        return regs.readFloatRegBits(flatIndex, width);
256    }
257
258    FloatRegBits readFloatRegBits(int reg_idx)
259    {
260        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
261        return regs.readFloatRegBits(flatIndex);
262    }
263
264    void setIntReg(int reg_idx, uint64_t val)
265    {
266        int flatIndex = TheISA::flattenIntIndex(getTC(), reg_idx);
267        regs.setIntReg(flatIndex, val);
268    }
269
270    void setFloatReg(int reg_idx, FloatReg val, int width)
271    {
272        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
273        regs.setFloatReg(flatIndex, val, width);
274    }
275
276    void setFloatReg(int reg_idx, FloatReg val)
277    {
278        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
279        regs.setFloatReg(flatIndex, val);
280    }
281
282    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
283    {
284        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
285        regs.setFloatRegBits(flatIndex, val, width);
286    }
287
288    void setFloatRegBits(int reg_idx, FloatRegBits val)
289    {
290        int flatIndex = TheISA::flattenFloatIndex(getTC(), reg_idx);
291        regs.setFloatRegBits(flatIndex, val);
292    }
293
294    uint64_t readPC()
295    {
296        return regs.readPC();
297    }
298
299    void setPC(uint64_t val)
300    {
301        regs.setPC(val);
302    }
303
304    uint64_t readMicroPC()
305    {
306        return microPC;
307    }
308
309    void setMicroPC(uint64_t val)
310    {
311        microPC = val;
312    }
313
314    uint64_t readNextPC()
315    {
316        return regs.readNextPC();
317    }
318
319    void setNextPC(uint64_t val)
320    {
321        regs.setNextPC(val);
322    }
323
324    uint64_t readNextMicroPC()
325    {
326        return nextMicroPC;
327    }
328
329    void setNextMicroPC(uint64_t val)
330    {
331        nextMicroPC = val;
332    }
333
334    uint64_t readNextNPC()
335    {
336        return regs.readNextNPC();
337    }
338
339    void setNextNPC(uint64_t val)
340    {
341        regs.setNextNPC(val);
342    }
343
344    MiscReg readMiscRegNoEffect(int misc_reg, unsigned tid = 0)
345    {
346        return regs.readMiscRegNoEffect(misc_reg);
347    }
348
349    MiscReg readMiscReg(int misc_reg, unsigned tid = 0)
350    {
351        return regs.readMiscReg(misc_reg, tc);
352    }
353
354    void setMiscRegNoEffect(int misc_reg, const MiscReg &val, unsigned tid = 0)
355    {
356        return regs.setMiscRegNoEffect(misc_reg, val);
357    }
358
359    void setMiscReg(int misc_reg, const MiscReg &val, unsigned tid = 0)
360    {
361        return regs.setMiscReg(misc_reg, val, tc);
362    }
363
364    unsigned readStCondFailures() { return storeCondFailures; }
365
366    void setStCondFailures(unsigned sc_failures)
367    { storeCondFailures = sc_failures; }
368
369#if !FULL_SYSTEM
370    TheISA::IntReg getSyscallArg(int i)
371    {
372        assert(i < TheISA::NumArgumentRegs);
373        TheISA::IntReg val = regs.readIntReg(
374                TheISA::flattenIntIndex(getTC(), TheISA::ArgumentReg[i]));
375#if THE_ISA == SPARC_ISA
376        if (bits(this->readMiscRegNoEffect(
377                        SparcISA::MISCREG_PSTATE), 3, 3)) {
378            val = bits(val, 31, 0);
379        }
380#endif
381        return val;
382    }
383
384    // used to shift args for indirect syscall
385    void setSyscallArg(int i, TheISA::IntReg val)
386    {
387        assert(i < TheISA::NumArgumentRegs);
388        regs.setIntReg(TheISA::flattenIntIndex(getTC(),
389                    TheISA::ArgumentReg[i]), val);
390    }
391
392    void setSyscallReturn(SyscallReturn return_value)
393    {
394        TheISA::setSyscallReturn(return_value, getTC());
395    }
396
397    void syscall(int64_t callnum)
398    {
399        process->syscall(callnum, tc);
400    }
401#endif
402};
403
404
405// for non-speculative execution context, spec_mode is always false
406inline bool
407SimpleThread::misspeculating()
408{
409    return false;
410}
411
412#endif // __CPU_CPU_EXEC_CONTEXT_HH__
413