simple_thread.hh revision 14022
1/* 2 * Copyright (c) 2011-2012, 2016-2018 ARM Limited 3 * Copyright (c) 2013 Advanced Micro Devices, Inc. 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Copyright (c) 2001-2006 The Regents of The University of Michigan 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Steve Reinhardt 42 * Nathan Binkert 43 */ 44 45#ifndef __CPU_SIMPLE_THREAD_HH__ 46#define __CPU_SIMPLE_THREAD_HH__ 47 48#include "arch/decoder.hh" 49#include "arch/generic/tlb.hh" 50#include "arch/isa.hh" 51#include "arch/isa_traits.hh" 52#include "arch/registers.hh" 53#include "arch/types.hh" 54#include "base/types.hh" 55#include "config/the_isa.hh" 56#include "cpu/thread_context.hh" 57#include "cpu/thread_state.hh" 58#include "debug/CCRegs.hh" 59#include "debug/FloatRegs.hh" 60#include "debug/IntRegs.hh" 61#include "debug/VecPredRegs.hh" 62#include "debug/VecRegs.hh" 63#include "mem/page_table.hh" 64#include "mem/request.hh" 65#include "sim/byteswap.hh" 66#include "sim/eventq.hh" 67#include "sim/process.hh" 68#include "sim/serialize.hh" 69#include "sim/system.hh" 70 71class BaseCPU; 72class CheckerCPU; 73 74class FunctionProfile; 75class ProfileNode; 76 77namespace Kernel { 78 class Statistics; 79} 80 81/** 82 * The SimpleThread object provides a combination of the ThreadState 83 * object and the ThreadContext interface. It implements the 84 * ThreadContext interface and adds to the ThreadState object by adding all 85 * the objects needed for simple functional execution, including a 86 * simple architectural register file, and pointers to the ITB and DTB 87 * in full system mode. For CPU models that do not need more advanced 88 * ways to hold state (i.e. a separate physical register file, or 89 * separate fetch and commit PC's), this SimpleThread class provides 90 * all the necessary state for full architecture-level functional 91 * simulation. See the AtomicSimpleCPU or TimingSimpleCPU for 92 * examples. 93 */ 94 95class SimpleThread : public ThreadState, public ThreadContext 96{ 97 protected: 98 typedef TheISA::MachInst MachInst; 99 using VecRegContainer = TheISA::VecRegContainer; 100 using VecElem = TheISA::VecElem; 101 using VecPredRegContainer = TheISA::VecPredRegContainer; 102 public: 103 typedef ThreadContext::Status Status; 104 105 protected: 106 RegVal floatRegs[TheISA::NumFloatRegs]; 107 RegVal intRegs[TheISA::NumIntRegs]; 108 VecRegContainer vecRegs[TheISA::NumVecRegs]; 109 VecPredRegContainer vecPredRegs[TheISA::NumVecPredRegs]; 110#ifdef ISA_HAS_CC_REGS 111 RegVal ccRegs[TheISA::NumCCRegs]; 112#endif 113 TheISA::ISA *const isa; // one "instance" of the current ISA. 114 115 TheISA::PCState _pcState; 116 117 /** Did this instruction execute or is it predicated false */ 118 bool predicate; 119 120 /** True if the memory access should be skipped for this instruction */ 121 bool memAccPredicate; 122 123 public: 124 std::string name() const 125 { 126 return csprintf("%s.[tid:%i]", baseCpu->name(), threadId()); 127 } 128 129 System *system; 130 131 BaseTLB *itb; 132 BaseTLB *dtb; 133 134 TheISA::Decoder decoder; 135 136 // constructor: initialize SimpleThread from given process structure 137 // FS 138 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, 139 BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa, 140 bool use_kernel_stats = true); 141 // SE 142 SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system, 143 Process *_process, BaseTLB *_itb, BaseTLB *_dtb, 144 TheISA::ISA *_isa); 145 146 virtual ~SimpleThread() {} 147 148 void takeOverFrom(ThreadContext *oldContext) override; 149 150 void regStats(const std::string &name) override; 151 152 void copyState(ThreadContext *oldContext); 153 154 void serialize(CheckpointOut &cp) const override; 155 void unserialize(CheckpointIn &cp) override; 156 void startup(); 157 158 /*************************************************************** 159 * SimpleThread functions to provide CPU with access to various 160 * state. 161 **************************************************************/ 162 163 /** Returns the pointer to this SimpleThread's ThreadContext. Used 164 * when a ThreadContext must be passed to objects outside of the 165 * CPU. 166 */ 167 ThreadContext *getTC() { return this; } 168 169 void demapPage(Addr vaddr, uint64_t asn) 170 { 171 itb->demapPage(vaddr, asn); 172 dtb->demapPage(vaddr, asn); 173 } 174 175 void demapInstPage(Addr vaddr, uint64_t asn) 176 { 177 itb->demapPage(vaddr, asn); 178 } 179 180 void demapDataPage(Addr vaddr, uint64_t asn) 181 { 182 dtb->demapPage(vaddr, asn); 183 } 184 185 void dumpFuncProfile() override; 186 187 /******************************************* 188 * ThreadContext interface functions. 189 ******************************************/ 190 191 BaseCPU *getCpuPtr() override { return baseCpu; } 192 193 int cpuId() const override { return ThreadState::cpuId(); } 194 uint32_t socketId() const override { return ThreadState::socketId(); } 195 int threadId() const override { return ThreadState::threadId(); } 196 void setThreadId(int id) override { ThreadState::setThreadId(id); } 197 ContextID contextId() const override { return ThreadState::contextId(); } 198 void setContextId(ContextID id) override { ThreadState::setContextId(id); } 199 200 BaseTLB *getITBPtr() override { return itb; } 201 202 BaseTLB *getDTBPtr() override { return dtb; } 203 204 CheckerCPU *getCheckerCpuPtr() override { return NULL; } 205 206 TheISA::ISA *getIsaPtr() override { return isa; } 207 208 TheISA::Decoder *getDecoderPtr() override { return &decoder; } 209 210 System *getSystemPtr() override { return system; } 211 212 Kernel::Statistics * 213 getKernelStats() override 214 { 215 return ThreadState::getKernelStats(); 216 } 217 218 PortProxy &getPhysProxy() override { return ThreadState::getPhysProxy(); } 219 PortProxy &getVirtProxy() override { return ThreadState::getVirtProxy(); } 220 221 void initMemProxies(ThreadContext *tc) override 222 { 223 ThreadState::initMemProxies(tc); 224 } 225 226 PortProxy & 227 getMemProxy() override 228 { 229 return ThreadState::getMemProxy(); 230 } 231 232 Process *getProcessPtr() override { return ThreadState::getProcessPtr(); } 233 void setProcessPtr(Process *p) override { ThreadState::setProcessPtr(p); } 234 235 Status status() const override { return _status; } 236 237 void setStatus(Status newStatus) override { _status = newStatus; } 238 239 /// Set the status to Active. 240 void activate() override; 241 242 /// Set the status to Suspended. 243 void suspend() override; 244 245 /// Set the status to Halted. 246 void halt() override; 247 248 EndQuiesceEvent * 249 getQuiesceEvent() override 250 { 251 return ThreadState::getQuiesceEvent(); 252 } 253 254 Tick 255 readLastActivate() override 256 { 257 return ThreadState::readLastActivate(); 258 } 259 Tick 260 readLastSuspend() override 261 { 262 return ThreadState::readLastSuspend(); 263 } 264 265 void profileClear() override { ThreadState::profileClear(); } 266 void profileSample() override { ThreadState::profileSample(); } 267 268 void copyArchRegs(ThreadContext *tc) override; 269 270 void clearArchRegs() override 271 { 272 _pcState = 0; 273 memset(intRegs, 0, sizeof(intRegs)); 274 memset(floatRegs, 0, sizeof(floatRegs)); 275 for (int i = 0; i < TheISA::NumVecRegs; i++) { 276 vecRegs[i].zero(); 277 } 278 for (int i = 0; i < TheISA::NumVecPredRegs; i++) { 279 vecPredRegs[i].reset(); 280 } 281#ifdef ISA_HAS_CC_REGS 282 memset(ccRegs, 0, sizeof(ccRegs)); 283#endif 284 isa->clear(); 285 } 286 287 // 288 // New accessors for new decoder. 289 // 290 RegVal 291 readIntReg(RegIndex reg_idx) const override 292 { 293 int flatIndex = isa->flattenIntIndex(reg_idx); 294 assert(flatIndex < TheISA::NumIntRegs); 295 uint64_t regVal(readIntRegFlat(flatIndex)); 296 DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n", 297 reg_idx, flatIndex, regVal); 298 return regVal; 299 } 300 301 RegVal 302 readFloatReg(RegIndex reg_idx) const override 303 { 304 int flatIndex = isa->flattenFloatIndex(reg_idx); 305 assert(flatIndex < TheISA::NumFloatRegs); 306 RegVal regVal(readFloatRegFlat(flatIndex)); 307 DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x.\n", 308 reg_idx, flatIndex, regVal); 309 return regVal; 310 } 311 312 const VecRegContainer& 313 readVecReg(const RegId& reg) const override 314 { 315 int flatIndex = isa->flattenVecIndex(reg.index()); 316 assert(flatIndex < TheISA::NumVecRegs); 317 const VecRegContainer& regVal = readVecRegFlat(flatIndex); 318 DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n", 319 reg.index(), flatIndex, regVal.print()); 320 return regVal; 321 } 322 323 VecRegContainer& 324 getWritableVecReg(const RegId& reg) override 325 { 326 int flatIndex = isa->flattenVecIndex(reg.index()); 327 assert(flatIndex < TheISA::NumVecRegs); 328 VecRegContainer& regVal = getWritableVecRegFlat(flatIndex); 329 DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n", 330 reg.index(), flatIndex, regVal.print()); 331 return regVal; 332 } 333 334 /** Vector Register Lane Interfaces. */ 335 /** @{ */ 336 /** Reads source vector <T> operand. */ 337 template <typename T> 338 VecLaneT<T, true> 339 readVecLane(const RegId& reg) const 340 { 341 int flatIndex = isa->flattenVecIndex(reg.index()); 342 assert(flatIndex < TheISA::NumVecRegs); 343 auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex()); 344 DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n", 345 reg.index(), flatIndex, reg.elemIndex(), regVal); 346 return regVal; 347 } 348 349 /** Reads source vector 8bit operand. */ 350 virtual ConstVecLane8 351 readVec8BitLaneReg(const RegId ®) const override 352 { 353 return readVecLane<uint8_t>(reg); 354 } 355 356 /** Reads source vector 16bit operand. */ 357 virtual ConstVecLane16 358 readVec16BitLaneReg(const RegId ®) const override 359 { 360 return readVecLane<uint16_t>(reg); 361 } 362 363 /** Reads source vector 32bit operand. */ 364 virtual ConstVecLane32 365 readVec32BitLaneReg(const RegId ®) const override 366 { 367 return readVecLane<uint32_t>(reg); 368 } 369 370 /** Reads source vector 64bit operand. */ 371 virtual ConstVecLane64 372 readVec64BitLaneReg(const RegId ®) const override 373 { 374 return readVecLane<uint64_t>(reg); 375 } 376 377 /** Write a lane of the destination vector register. */ 378 template <typename LD> 379 void 380 setVecLaneT(const RegId ®, const LD &val) 381 { 382 int flatIndex = isa->flattenVecIndex(reg.index()); 383 assert(flatIndex < TheISA::NumVecRegs); 384 setVecLaneFlat(flatIndex, reg.elemIndex(), val); 385 DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n", 386 reg.index(), flatIndex, reg.elemIndex(), val); 387 } 388 virtual void 389 setVecLane(const RegId ®, const LaneData<LaneSize::Byte> &val) override 390 { 391 return setVecLaneT(reg, val); 392 } 393 virtual void 394 setVecLane(const RegId ®, 395 const LaneData<LaneSize::TwoByte> &val) override 396 { 397 return setVecLaneT(reg, val); 398 } 399 virtual void 400 setVecLane(const RegId ®, 401 const LaneData<LaneSize::FourByte> &val) override 402 { 403 return setVecLaneT(reg, val); 404 } 405 virtual void 406 setVecLane(const RegId ®, 407 const LaneData<LaneSize::EightByte> &val) override 408 { 409 return setVecLaneT(reg, val); 410 } 411 /** @} */ 412 413 const VecElem & 414 readVecElem(const RegId ®) const override 415 { 416 int flatIndex = isa->flattenVecElemIndex(reg.index()); 417 assert(flatIndex < TheISA::NumVecRegs); 418 const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex()); 419 DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as" 420 " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal); 421 return regVal; 422 } 423 424 const VecPredRegContainer & 425 readVecPredReg(const RegId ®) const override 426 { 427 int flatIndex = isa->flattenVecPredIndex(reg.index()); 428 assert(flatIndex < TheISA::NumVecPredRegs); 429 const VecPredRegContainer& regVal = readVecPredRegFlat(flatIndex); 430 DPRINTF(VecPredRegs, "Reading predicate reg %d (%d) as %s.\n", 431 reg.index(), flatIndex, regVal.print()); 432 return regVal; 433 } 434 435 VecPredRegContainer & 436 getWritableVecPredReg(const RegId ®) override 437 { 438 int flatIndex = isa->flattenVecPredIndex(reg.index()); 439 assert(flatIndex < TheISA::NumVecPredRegs); 440 VecPredRegContainer& regVal = getWritableVecPredRegFlat(flatIndex); 441 DPRINTF(VecPredRegs, 442 "Reading predicate reg %d (%d) as %s for modify.\n", 443 reg.index(), flatIndex, regVal.print()); 444 return regVal; 445 } 446 447 RegVal 448 readCCReg(RegIndex reg_idx) const override 449 { 450#ifdef ISA_HAS_CC_REGS 451 int flatIndex = isa->flattenCCIndex(reg_idx); 452 assert(0 <= flatIndex); 453 assert(flatIndex < TheISA::NumCCRegs); 454 uint64_t regVal(readCCRegFlat(flatIndex)); 455 DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n", 456 reg_idx, flatIndex, regVal); 457 return regVal; 458#else 459 panic("Tried to read a CC register."); 460 return 0; 461#endif 462 } 463 464 void 465 setIntReg(RegIndex reg_idx, RegVal val) override 466 { 467 int flatIndex = isa->flattenIntIndex(reg_idx); 468 assert(flatIndex < TheISA::NumIntRegs); 469 DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n", 470 reg_idx, flatIndex, val); 471 setIntRegFlat(flatIndex, val); 472 } 473 474 void 475 setFloatReg(RegIndex reg_idx, RegVal val) override 476 { 477 int flatIndex = isa->flattenFloatIndex(reg_idx); 478 assert(flatIndex < TheISA::NumFloatRegs); 479 // XXX: Fix array out of bounds compiler error for gem5.fast 480 // when checkercpu enabled 481 if (flatIndex < TheISA::NumFloatRegs) 482 setFloatRegFlat(flatIndex, val); 483 DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x.\n", 484 reg_idx, flatIndex, val); 485 } 486 487 void 488 setVecReg(const RegId ®, const VecRegContainer &val) override 489 { 490 int flatIndex = isa->flattenVecIndex(reg.index()); 491 assert(flatIndex < TheISA::NumVecRegs); 492 setVecRegFlat(flatIndex, val); 493 DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n", 494 reg.index(), flatIndex, val.print()); 495 } 496 497 void 498 setVecElem(const RegId ®, const VecElem &val) override 499 { 500 int flatIndex = isa->flattenVecElemIndex(reg.index()); 501 assert(flatIndex < TheISA::NumVecRegs); 502 setVecElemFlat(flatIndex, reg.elemIndex(), val); 503 DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to" 504 " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val); 505 } 506 507 void 508 setVecPredReg(const RegId ®, const VecPredRegContainer &val) override 509 { 510 int flatIndex = isa->flattenVecPredIndex(reg.index()); 511 assert(flatIndex < TheISA::NumVecPredRegs); 512 setVecPredRegFlat(flatIndex, val); 513 DPRINTF(VecPredRegs, "Setting predicate reg %d (%d) to %s.\n", 514 reg.index(), flatIndex, val.print()); 515 } 516 517 void 518 setCCReg(RegIndex reg_idx, RegVal val) override 519 { 520#ifdef ISA_HAS_CC_REGS 521 int flatIndex = isa->flattenCCIndex(reg_idx); 522 assert(flatIndex < TheISA::NumCCRegs); 523 DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n", 524 reg_idx, flatIndex, val); 525 setCCRegFlat(flatIndex, val); 526#else 527 panic("Tried to set a CC register."); 528#endif 529 } 530 531 TheISA::PCState pcState() const override { return _pcState; } 532 void pcState(const TheISA::PCState &val) override { _pcState = val; } 533 534 void 535 pcStateNoRecord(const TheISA::PCState &val) override 536 { 537 _pcState = val; 538 } 539 540 Addr instAddr() const override { return _pcState.instAddr(); } 541 Addr nextInstAddr() const override { return _pcState.nextInstAddr(); } 542 MicroPC microPC() const override { return _pcState.microPC(); } 543 bool readPredicate() const { return predicate; } 544 void setPredicate(bool val) { predicate = val; } 545 546 RegVal 547 readMiscRegNoEffect(RegIndex misc_reg) const override 548 { 549 return isa->readMiscRegNoEffect(misc_reg); 550 } 551 552 RegVal 553 readMiscReg(RegIndex misc_reg) override 554 { 555 return isa->readMiscReg(misc_reg, this); 556 } 557 558 void 559 setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override 560 { 561 return isa->setMiscRegNoEffect(misc_reg, val); 562 } 563 564 void 565 setMiscReg(RegIndex misc_reg, RegVal val) override 566 { 567 return isa->setMiscReg(misc_reg, val, this); 568 } 569 570 RegId 571 flattenRegId(const RegId& regId) const override 572 { 573 return isa->flattenRegId(regId); 574 } 575 576 unsigned readStCondFailures() const override { return storeCondFailures; } 577 578 bool 579 readMemAccPredicate() 580 { 581 return memAccPredicate; 582 } 583 584 void 585 setMemAccPredicate(bool val) 586 { 587 memAccPredicate = val; 588 } 589 590 void 591 setStCondFailures(unsigned sc_failures) override 592 { 593 storeCondFailures = sc_failures; 594 } 595 596 Counter 597 readFuncExeInst() const override 598 { 599 return ThreadState::readFuncExeInst(); 600 } 601 602 void 603 syscall(int64_t callnum, Fault *fault) override 604 { 605 process->syscall(callnum, this, fault); 606 } 607 608 RegVal readIntRegFlat(RegIndex idx) const override { return intRegs[idx]; } 609 void 610 setIntRegFlat(RegIndex idx, RegVal val) override 611 { 612 intRegs[idx] = val; 613 } 614 615 RegVal 616 readFloatRegFlat(RegIndex idx) const override 617 { 618 return floatRegs[idx]; 619 } 620 void 621 setFloatRegFlat(RegIndex idx, RegVal val) override 622 { 623 floatRegs[idx] = val; 624 } 625 626 const VecRegContainer & 627 readVecRegFlat(RegIndex reg) const override 628 { 629 return vecRegs[reg]; 630 } 631 632 VecRegContainer & 633 getWritableVecRegFlat(RegIndex reg) override 634 { 635 return vecRegs[reg]; 636 } 637 638 void 639 setVecRegFlat(RegIndex reg, const VecRegContainer &val) override 640 { 641 vecRegs[reg] = val; 642 } 643 644 template <typename T> 645 VecLaneT<T, true> 646 readVecLaneFlat(RegIndex reg, int lId) const 647 { 648 return vecRegs[reg].laneView<T>(lId); 649 } 650 651 template <typename LD> 652 void 653 setVecLaneFlat(RegIndex reg, int lId, const LD &val) 654 { 655 vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val; 656 } 657 658 const VecElem & 659 readVecElemFlat(RegIndex reg, const ElemIndex &elemIndex) const override 660 { 661 return vecRegs[reg].as<TheISA::VecElem>()[elemIndex]; 662 } 663 664 void 665 setVecElemFlat(RegIndex reg, const ElemIndex &elemIndex, 666 const VecElem &val) override 667 { 668 vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val; 669 } 670 671 const VecPredRegContainer & 672 readVecPredRegFlat(RegIndex reg) const override 673 { 674 return vecPredRegs[reg]; 675 } 676 677 VecPredRegContainer & 678 getWritableVecPredRegFlat(RegIndex reg) override 679 { 680 return vecPredRegs[reg]; 681 } 682 683 void 684 setVecPredRegFlat(RegIndex reg, const VecPredRegContainer &val) override 685 { 686 vecPredRegs[reg] = val; 687 } 688 689#ifdef ISA_HAS_CC_REGS 690 RegVal readCCRegFlat(RegIndex idx) const override { return ccRegs[idx]; } 691 void setCCRegFlat(RegIndex idx, RegVal val) override { ccRegs[idx] = val; } 692#else 693 RegVal 694 readCCRegFlat(RegIndex idx) const override 695 { 696 panic("readCCRegFlat w/no CC regs!\n"); 697 } 698 699 void 700 setCCRegFlat(RegIndex idx, RegVal val) override 701 { 702 panic("setCCRegFlat w/no CC regs!\n"); 703 } 704#endif 705}; 706 707 708#endif // __CPU_CPU_EXEC_CONTEXT_HH__ 709