timing.cc revision 9837:13a21202375d
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    // Initialise the ThreadContext's memory proxies
70    tcBase()->initMemProxies(tcBase());
71
72    if (FullSystem && !params()->switched_out) {
73        for (int i = 0; i < threadContexts.size(); ++i) {
74            ThreadContext *tc = threadContexts[i];
75            // initialize CPU, including PC
76            TheISA::initCPU(tc, _cpuId);
77        }
78    }
79}
80
81void
82TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83{
84    pkt = _pkt;
85    cpu->schedule(this, t);
86}
87
88TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91      fetchEvent(this), drainManager(NULL)
92{
93    _status = Idle;
94
95    system->totalNumInsts = 0;
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103unsigned int
104TimingSimpleCPU::drain(DrainManager *drain_manager)
105{
106    assert(!drainManager);
107    if (switchedOut())
108        return 0;
109
110    if (_status == Idle ||
111        (_status == BaseSimpleCPU::Running && isDrained())) {
112        DPRINTF(Drain, "No need to drain.\n");
113        return 0;
114    } else {
115        drainManager = drain_manager;
116        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
117
118        // The fetch event can become descheduled if a drain didn't
119        // succeed on the first attempt. We need to reschedule it if
120        // the CPU is waiting for a microcode routine to complete.
121        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
122            schedule(fetchEvent, clockEdge());
123
124        return 1;
125    }
126}
127
128void
129TimingSimpleCPU::drainResume()
130{
131    assert(!fetchEvent.scheduled());
132    assert(!drainManager);
133    if (switchedOut())
134        return;
135
136    DPRINTF(SimpleCPU, "Resume\n");
137    verifyMemoryMode();
138
139    assert(!threadContexts.empty());
140    if (threadContexts.size() > 1)
141        fatal("The timing CPU only supports one thread.\n");
142
143    if (thread->status() == ThreadContext::Active) {
144        schedule(fetchEvent, nextCycle());
145        _status = BaseSimpleCPU::Running;
146        notIdleFraction = 1;
147    } else {
148        _status = BaseSimpleCPU::Idle;
149        notIdleFraction = 0;
150    }
151}
152
153bool
154TimingSimpleCPU::tryCompleteDrain()
155{
156    if (!drainManager)
157        return false;
158
159    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
160    if (!isDrained())
161        return false;
162
163    DPRINTF(Drain, "CPU done draining, processing drain event\n");
164    drainManager->signalDrainDone();
165    drainManager = NULL;
166
167    return true;
168}
169
170void
171TimingSimpleCPU::switchOut()
172{
173    BaseSimpleCPU::switchOut();
174
175    assert(!fetchEvent.scheduled());
176    assert(_status == BaseSimpleCPU::Running || _status == Idle);
177    assert(!stayAtPC);
178    assert(microPC() == 0);
179
180    numCycles += curCycle() - previousCycle;
181}
182
183
184void
185TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186{
187    BaseSimpleCPU::takeOverFrom(oldCPU);
188
189    previousCycle = curCycle();
190}
191
192void
193TimingSimpleCPU::verifyMemoryMode() const
194{
195    if (!system->isTimingMode()) {
196        fatal("The timing CPU requires the memory system to be in "
197              "'timing' mode.\n");
198    }
199}
200
201void
202TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
203{
204    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
205
206    assert(thread_num == 0);
207    assert(thread);
208
209    assert(_status == Idle);
210
211    notIdleFraction = 1;
212    _status = BaseSimpleCPU::Running;
213
214    // kick things off by initiating the fetch of the next instruction
215    schedule(fetchEvent, clockEdge(delay));
216}
217
218
219void
220TimingSimpleCPU::suspendContext(ThreadID thread_num)
221{
222    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
223
224    assert(thread_num == 0);
225    assert(thread);
226
227    if (_status == Idle)
228        return;
229
230    assert(_status == BaseSimpleCPU::Running);
231
232    // just change status to Idle... if status != Running,
233    // completeInst() will not initiate fetch of next instruction.
234
235    notIdleFraction = 0;
236    _status = Idle;
237}
238
239bool
240TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
241{
242    RequestPtr req = pkt->req;
243    if (req->isMmappedIpr()) {
244        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
245        new IprEvent(pkt, this, clockEdge(delay));
246        _status = DcacheWaitResponse;
247        dcache_pkt = NULL;
248    } else if (!dcachePort.sendTimingReq(pkt)) {
249        _status = DcacheRetry;
250        dcache_pkt = pkt;
251    } else {
252        _status = DcacheWaitResponse;
253        // memory system takes ownership of packet
254        dcache_pkt = NULL;
255    }
256    return dcache_pkt == NULL;
257}
258
259void
260TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
261                          bool read)
262{
263    PacketPtr pkt;
264    buildPacket(pkt, req, read);
265    pkt->dataDynamicArray<uint8_t>(data);
266    if (req->getFlags().isSet(Request::NO_ACCESS)) {
267        assert(!dcache_pkt);
268        pkt->makeResponse();
269        completeDataAccess(pkt);
270    } else if (read) {
271        handleReadPacket(pkt);
272    } else {
273        bool do_access = true;  // flag to suppress cache access
274
275        if (req->isLLSC()) {
276            do_access = TheISA::handleLockedWrite(thread, req);
277        } else if (req->isCondSwap()) {
278            assert(res);
279            req->setExtraData(*res);
280        }
281
282        if (do_access) {
283            dcache_pkt = pkt;
284            handleWritePacket();
285        } else {
286            _status = DcacheWaitResponse;
287            completeDataAccess(pkt);
288        }
289    }
290}
291
292void
293TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
294                               RequestPtr req, uint8_t *data, bool read)
295{
296    PacketPtr pkt1, pkt2;
297    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
298    if (req->getFlags().isSet(Request::NO_ACCESS)) {
299        assert(!dcache_pkt);
300        pkt1->makeResponse();
301        completeDataAccess(pkt1);
302    } else if (read) {
303        SplitFragmentSenderState * send_state =
304            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
305        if (handleReadPacket(pkt1)) {
306            send_state->clearFromParent();
307            send_state = dynamic_cast<SplitFragmentSenderState *>(
308                    pkt2->senderState);
309            if (handleReadPacket(pkt2)) {
310                send_state->clearFromParent();
311            }
312        }
313    } else {
314        dcache_pkt = pkt1;
315        SplitFragmentSenderState * send_state =
316            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317        if (handleWritePacket()) {
318            send_state->clearFromParent();
319            dcache_pkt = pkt2;
320            send_state = dynamic_cast<SplitFragmentSenderState *>(
321                    pkt2->senderState);
322            if (handleWritePacket()) {
323                send_state->clearFromParent();
324            }
325        }
326    }
327}
328
329void
330TimingSimpleCPU::translationFault(Fault fault)
331{
332    // fault may be NoFault in cases where a fault is suppressed,
333    // for instance prefetches.
334    numCycles += curCycle() - previousCycle;
335    previousCycle = curCycle();
336
337    if (traceData) {
338        // Since there was a fault, we shouldn't trace this instruction.
339        delete traceData;
340        traceData = NULL;
341    }
342
343    postExecute();
344
345    advanceInst(fault);
346}
347
348void
349TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
350{
351    MemCmd cmd;
352    if (read) {
353        cmd = MemCmd::ReadReq;
354        if (req->isLLSC())
355            cmd = MemCmd::LoadLockedReq;
356    } else {
357        cmd = MemCmd::WriteReq;
358        if (req->isLLSC()) {
359            cmd = MemCmd::StoreCondReq;
360        } else if (req->isSwap()) {
361            cmd = MemCmd::SwapReq;
362        }
363    }
364    pkt = new Packet(req, cmd);
365}
366
367void
368TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
369        RequestPtr req1, RequestPtr req2, RequestPtr req,
370        uint8_t *data, bool read)
371{
372    pkt1 = pkt2 = NULL;
373
374    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
375
376    if (req->getFlags().isSet(Request::NO_ACCESS)) {
377        buildPacket(pkt1, req, read);
378        return;
379    }
380
381    buildPacket(pkt1, req1, read);
382    buildPacket(pkt2, req2, read);
383
384    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
385    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
386
387    pkt->dataDynamicArray<uint8_t>(data);
388    pkt1->dataStatic<uint8_t>(data);
389    pkt2->dataStatic<uint8_t>(data + req1->getSize());
390
391    SplitMainSenderState * main_send_state = new SplitMainSenderState;
392    pkt->senderState = main_send_state;
393    main_send_state->fragments[0] = pkt1;
394    main_send_state->fragments[1] = pkt2;
395    main_send_state->outstanding = 2;
396    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
397    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
398}
399
400Fault
401TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
402                         unsigned size, unsigned flags)
403{
404    Fault fault;
405    const int asid = 0;
406    const ThreadID tid = 0;
407    const Addr pc = thread->instAddr();
408    unsigned block_size = cacheLineSize();
409    BaseTLB::Mode mode = BaseTLB::Read;
410
411    if (traceData) {
412        traceData->setAddr(addr);
413    }
414
415    RequestPtr req  = new Request(asid, addr, size,
416                                  flags, dataMasterId(), pc, _cpuId, tid);
417
418    Addr split_addr = roundDown(addr + size - 1, block_size);
419    assert(split_addr <= addr || split_addr - addr < block_size);
420
421    _status = DTBWaitResponse;
422    if (split_addr > addr) {
423        RequestPtr req1, req2;
424        assert(!req->isLLSC() && !req->isSwap());
425        req->splitOnVaddr(split_addr, req1, req2);
426
427        WholeTranslationState *state =
428            new WholeTranslationState(req, req1, req2, new uint8_t[size],
429                                      NULL, mode);
430        DataTranslation<TimingSimpleCPU *> *trans1 =
431            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
432        DataTranslation<TimingSimpleCPU *> *trans2 =
433            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
434
435        thread->dtb->translateTiming(req1, tc, trans1, mode);
436        thread->dtb->translateTiming(req2, tc, trans2, mode);
437    } else {
438        WholeTranslationState *state =
439            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
440        DataTranslation<TimingSimpleCPU *> *translation
441            = new DataTranslation<TimingSimpleCPU *>(this, state);
442        thread->dtb->translateTiming(req, tc, translation, mode);
443    }
444
445    return NoFault;
446}
447
448bool
449TimingSimpleCPU::handleWritePacket()
450{
451    RequestPtr req = dcache_pkt->req;
452    if (req->isMmappedIpr()) {
453        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
454        new IprEvent(dcache_pkt, this, clockEdge(delay));
455        _status = DcacheWaitResponse;
456        dcache_pkt = NULL;
457    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
458        _status = DcacheRetry;
459    } else {
460        _status = DcacheWaitResponse;
461        // memory system takes ownership of packet
462        dcache_pkt = NULL;
463    }
464    return dcache_pkt == NULL;
465}
466
467Fault
468TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
469                          Addr addr, unsigned flags, uint64_t *res)
470{
471    uint8_t *newData = new uint8_t[size];
472    memcpy(newData, data, size);
473
474    const int asid = 0;
475    const ThreadID tid = 0;
476    const Addr pc = thread->instAddr();
477    unsigned block_size = cacheLineSize();
478    BaseTLB::Mode mode = BaseTLB::Write;
479
480    if (traceData) {
481        traceData->setAddr(addr);
482    }
483
484    RequestPtr req = new Request(asid, addr, size,
485                                 flags, dataMasterId(), pc, _cpuId, tid);
486
487    Addr split_addr = roundDown(addr + size - 1, block_size);
488    assert(split_addr <= addr || split_addr - addr < block_size);
489
490    _status = DTBWaitResponse;
491    if (split_addr > addr) {
492        RequestPtr req1, req2;
493        assert(!req->isLLSC() && !req->isSwap());
494        req->splitOnVaddr(split_addr, req1, req2);
495
496        WholeTranslationState *state =
497            new WholeTranslationState(req, req1, req2, newData, res, mode);
498        DataTranslation<TimingSimpleCPU *> *trans1 =
499            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
500        DataTranslation<TimingSimpleCPU *> *trans2 =
501            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
502
503        thread->dtb->translateTiming(req1, tc, trans1, mode);
504        thread->dtb->translateTiming(req2, tc, trans2, mode);
505    } else {
506        WholeTranslationState *state =
507            new WholeTranslationState(req, newData, res, mode);
508        DataTranslation<TimingSimpleCPU *> *translation =
509            new DataTranslation<TimingSimpleCPU *>(this, state);
510        thread->dtb->translateTiming(req, tc, translation, mode);
511    }
512
513    // Translation faults will be returned via finishTranslation()
514    return NoFault;
515}
516
517
518void
519TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
520{
521    _status = BaseSimpleCPU::Running;
522
523    if (state->getFault() != NoFault) {
524        if (state->isPrefetch()) {
525            state->setNoFault();
526        }
527        delete [] state->data;
528        state->deleteReqs();
529        translationFault(state->getFault());
530    } else {
531        if (!state->isSplit) {
532            sendData(state->mainReq, state->data, state->res,
533                     state->mode == BaseTLB::Read);
534        } else {
535            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
536                          state->data, state->mode == BaseTLB::Read);
537        }
538    }
539
540    delete state;
541}
542
543
544void
545TimingSimpleCPU::fetch()
546{
547    DPRINTF(SimpleCPU, "Fetch\n");
548
549    if (!curStaticInst || !curStaticInst->isDelayedCommit())
550        checkForInterrupts();
551
552    checkPcEventQueue();
553
554    // We must have just got suspended by a PC event
555    if (_status == Idle)
556        return;
557
558    TheISA::PCState pcState = thread->pcState();
559    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
560
561    if (needToFetch) {
562        _status = BaseSimpleCPU::Running;
563        Request *ifetch_req = new Request();
564        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
565        setupFetchRequest(ifetch_req);
566        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
567        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
568                BaseTLB::Execute);
569    } else {
570        _status = IcacheWaitResponse;
571        completeIfetch(NULL);
572
573        numCycles += curCycle() - previousCycle;
574        previousCycle = curCycle();
575    }
576}
577
578
579void
580TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
581{
582    if (fault == NoFault) {
583        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
584                req->getVaddr(), req->getPaddr());
585        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
586        ifetch_pkt->dataStatic(&inst);
587        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
588
589        if (!icachePort.sendTimingReq(ifetch_pkt)) {
590            // Need to wait for retry
591            _status = IcacheRetry;
592        } else {
593            // Need to wait for cache to respond
594            _status = IcacheWaitResponse;
595            // ownership of packet transferred to memory system
596            ifetch_pkt = NULL;
597        }
598    } else {
599        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
600        delete req;
601        // fetch fault: advance directly to next instruction (fault handler)
602        _status = BaseSimpleCPU::Running;
603        advanceInst(fault);
604    }
605
606    numCycles += curCycle() - previousCycle;
607    previousCycle = curCycle();
608}
609
610
611void
612TimingSimpleCPU::advanceInst(Fault fault)
613{
614    if (_status == Faulting)
615        return;
616
617    if (fault != NoFault) {
618        advancePC(fault);
619        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
620        reschedule(fetchEvent, clockEdge(), true);
621        _status = Faulting;
622        return;
623    }
624
625
626    if (!stayAtPC)
627        advancePC(fault);
628
629    if (tryCompleteDrain())
630            return;
631
632    if (_status == BaseSimpleCPU::Running) {
633        // kick off fetch of next instruction... callback from icache
634        // response will cause that instruction to be executed,
635        // keeping the CPU running.
636        fetch();
637    }
638}
639
640
641void
642TimingSimpleCPU::completeIfetch(PacketPtr pkt)
643{
644    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
645            pkt->getAddr() : 0);
646
647    // received a response from the icache: execute the received
648    // instruction
649
650    assert(!pkt || !pkt->isError());
651    assert(_status == IcacheWaitResponse);
652
653    _status = BaseSimpleCPU::Running;
654
655    numCycles += curCycle() - previousCycle;
656    previousCycle = curCycle();
657
658    preExecute();
659    if (curStaticInst && curStaticInst->isMemRef()) {
660        // load or store: just send to dcache
661        Fault fault = curStaticInst->initiateAcc(this, traceData);
662
663        // If we're not running now the instruction will complete in a dcache
664        // response callback or the instruction faulted and has started an
665        // ifetch
666        if (_status == BaseSimpleCPU::Running) {
667            if (fault != NoFault && traceData) {
668                // If there was a fault, we shouldn't trace this instruction.
669                delete traceData;
670                traceData = NULL;
671            }
672
673            postExecute();
674            // @todo remove me after debugging with legion done
675            if (curStaticInst && (!curStaticInst->isMicroop() ||
676                        curStaticInst->isFirstMicroop()))
677                instCnt++;
678            advanceInst(fault);
679        }
680    } else if (curStaticInst) {
681        // non-memory instruction: execute completely now
682        Fault fault = curStaticInst->execute(this, traceData);
683
684        // keep an instruction count
685        if (fault == NoFault)
686            countInst();
687        else if (traceData && !DTRACE(ExecFaulting)) {
688            delete traceData;
689            traceData = NULL;
690        }
691
692        postExecute();
693        // @todo remove me after debugging with legion done
694        if (curStaticInst && (!curStaticInst->isMicroop() ||
695                    curStaticInst->isFirstMicroop()))
696            instCnt++;
697        advanceInst(fault);
698    } else {
699        advanceInst(NoFault);
700    }
701
702    if (pkt) {
703        delete pkt->req;
704        delete pkt;
705    }
706}
707
708void
709TimingSimpleCPU::IcachePort::ITickEvent::process()
710{
711    cpu->completeIfetch(pkt);
712}
713
714bool
715TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
716{
717    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
718    // delay processing of returned data until next CPU clock edge
719    Tick next_tick = cpu->clockEdge();
720
721    if (next_tick == curTick())
722        cpu->completeIfetch(pkt);
723    else
724        tickEvent.schedule(pkt, next_tick);
725
726    return true;
727}
728
729void
730TimingSimpleCPU::IcachePort::recvRetry()
731{
732    // we shouldn't get a retry unless we have a packet that we're
733    // waiting to transmit
734    assert(cpu->ifetch_pkt != NULL);
735    assert(cpu->_status == IcacheRetry);
736    PacketPtr tmp = cpu->ifetch_pkt;
737    if (sendTimingReq(tmp)) {
738        cpu->_status = IcacheWaitResponse;
739        cpu->ifetch_pkt = NULL;
740    }
741}
742
743void
744TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
745{
746    // received a response from the dcache: complete the load or store
747    // instruction
748    assert(!pkt->isError());
749    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
750           pkt->req->getFlags().isSet(Request::NO_ACCESS));
751
752    numCycles += curCycle() - previousCycle;
753    previousCycle = curCycle();
754
755    if (pkt->senderState) {
756        SplitFragmentSenderState * send_state =
757            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
758        assert(send_state);
759        delete pkt->req;
760        delete pkt;
761        PacketPtr big_pkt = send_state->bigPkt;
762        delete send_state;
763
764        SplitMainSenderState * main_send_state =
765            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
766        assert(main_send_state);
767        // Record the fact that this packet is no longer outstanding.
768        assert(main_send_state->outstanding != 0);
769        main_send_state->outstanding--;
770
771        if (main_send_state->outstanding) {
772            return;
773        } else {
774            delete main_send_state;
775            big_pkt->senderState = NULL;
776            pkt = big_pkt;
777        }
778    }
779
780    _status = BaseSimpleCPU::Running;
781
782    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
783
784    // keep an instruction count
785    if (fault == NoFault)
786        countInst();
787    else if (traceData) {
788        // If there was a fault, we shouldn't trace this instruction.
789        delete traceData;
790        traceData = NULL;
791    }
792
793    // the locked flag may be cleared on the response packet, so check
794    // pkt->req and not pkt to see if it was a load-locked
795    if (pkt->isRead() && pkt->req->isLLSC()) {
796        TheISA::handleLockedRead(thread, pkt->req);
797    }
798
799    delete pkt->req;
800    delete pkt;
801
802    postExecute();
803
804    advanceInst(fault);
805}
806
807bool
808TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
809{
810    // delay processing of returned data until next CPU clock edge
811    Tick next_tick = cpu->clockEdge();
812
813    if (next_tick == curTick()) {
814        cpu->completeDataAccess(pkt);
815    } else {
816        if (!tickEvent.scheduled()) {
817            tickEvent.schedule(pkt, next_tick);
818        } else {
819            // In the case of a split transaction and a cache that is
820            // faster than a CPU we could get two responses before
821            // next_tick expires
822            if (!retryEvent.scheduled())
823                cpu->schedule(retryEvent, next_tick);
824            return false;
825        }
826    }
827
828    return true;
829}
830
831void
832TimingSimpleCPU::DcachePort::DTickEvent::process()
833{
834    cpu->completeDataAccess(pkt);
835}
836
837void
838TimingSimpleCPU::DcachePort::recvRetry()
839{
840    // we shouldn't get a retry unless we have a packet that we're
841    // waiting to transmit
842    assert(cpu->dcache_pkt != NULL);
843    assert(cpu->_status == DcacheRetry);
844    PacketPtr tmp = cpu->dcache_pkt;
845    if (tmp->senderState) {
846        // This is a packet from a split access.
847        SplitFragmentSenderState * send_state =
848            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
849        assert(send_state);
850        PacketPtr big_pkt = send_state->bigPkt;
851
852        SplitMainSenderState * main_send_state =
853            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
854        assert(main_send_state);
855
856        if (sendTimingReq(tmp)) {
857            // If we were able to send without retrying, record that fact
858            // and try sending the other fragment.
859            send_state->clearFromParent();
860            int other_index = main_send_state->getPendingFragment();
861            if (other_index > 0) {
862                tmp = main_send_state->fragments[other_index];
863                cpu->dcache_pkt = tmp;
864                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
865                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
866                    main_send_state->fragments[other_index] = NULL;
867                }
868            } else {
869                cpu->_status = DcacheWaitResponse;
870                // memory system takes ownership of packet
871                cpu->dcache_pkt = NULL;
872            }
873        }
874    } else if (sendTimingReq(tmp)) {
875        cpu->_status = DcacheWaitResponse;
876        // memory system takes ownership of packet
877        cpu->dcache_pkt = NULL;
878    }
879}
880
881TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
882    Tick t)
883    : pkt(_pkt), cpu(_cpu)
884{
885    cpu->schedule(this, t);
886}
887
888void
889TimingSimpleCPU::IprEvent::process()
890{
891    cpu->completeDataAccess(pkt);
892}
893
894const char *
895TimingSimpleCPU::IprEvent::description() const
896{
897    return "Timing Simple CPU Delay IPR event";
898}
899
900
901void
902TimingSimpleCPU::printAddr(Addr a)
903{
904    dcachePort.printAddr(a);
905}
906
907
908////////////////////////////////////////////////////////////////////////
909//
910//  TimingSimpleCPU Simulation Object
911//
912TimingSimpleCPU *
913TimingSimpleCPUParams::create()
914{
915    numThreads = 1;
916    if (!FullSystem && workload.size() != 1)
917        panic("only one workload allowed");
918    return new TimingSimpleCPU(this);
919}
920