timing.cc revision 9648:f10eb34e3e38
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    // Initialise the ThreadContext's memory proxies
70    tcBase()->initMemProxies(tcBase());
71
72    if (FullSystem && !params()->switched_out) {
73        for (int i = 0; i < threadContexts.size(); ++i) {
74            ThreadContext *tc = threadContexts[i];
75            // initialize CPU, including PC
76            TheISA::initCPU(tc, _cpuId);
77        }
78    }
79}
80
81void
82TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83{
84    pkt = _pkt;
85    cpu->schedule(this, t);
86}
87
88TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91      fetchEvent(this), drainManager(NULL)
92{
93    _status = Idle;
94
95    system->totalNumInsts = 0;
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103unsigned int
104TimingSimpleCPU::drain(DrainManager *drain_manager)
105{
106    assert(!drainManager);
107    if (switchedOut())
108        return 0;
109
110    if (_status == Idle ||
111        (_status == BaseSimpleCPU::Running && isDrained())) {
112        assert(!fetchEvent.scheduled());
113        DPRINTF(Drain, "No need to drain.\n");
114        return 0;
115    } else {
116        drainManager = drain_manager;
117        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
118
119        // The fetch event can become descheduled if a drain didn't
120        // succeed on the first attempt. We need to reschedule it if
121        // the CPU is waiting for a microcode routine to complete.
122        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
123            schedule(fetchEvent, clockEdge());
124
125        return 1;
126    }
127}
128
129void
130TimingSimpleCPU::drainResume()
131{
132    assert(!fetchEvent.scheduled());
133    assert(!drainManager);
134    if (switchedOut())
135        return;
136
137    DPRINTF(SimpleCPU, "Resume\n");
138    verifyMemoryMode();
139
140    assert(!threadContexts.empty());
141    if (threadContexts.size() > 1)
142        fatal("The timing CPU only supports one thread.\n");
143
144    if (thread->status() == ThreadContext::Active) {
145        schedule(fetchEvent, nextCycle());
146        _status = BaseSimpleCPU::Running;
147    } else {
148        _status = BaseSimpleCPU::Idle;
149    }
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155    if (!drainManager)
156        return false;
157
158    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
159    if (!isDrained())
160        return false;
161
162    DPRINTF(Drain, "CPU done draining, processing drain event\n");
163    drainManager->signalDrainDone();
164    drainManager = NULL;
165
166    return true;
167}
168
169void
170TimingSimpleCPU::switchOut()
171{
172    BaseSimpleCPU::switchOut();
173
174    assert(!fetchEvent.scheduled());
175    assert(_status == BaseSimpleCPU::Running || _status == Idle);
176    assert(!stayAtPC);
177    assert(microPC() == 0);
178
179    numCycles += curCycle() - previousCycle;
180}
181
182
183void
184TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
185{
186    BaseSimpleCPU::takeOverFrom(oldCPU);
187
188    previousCycle = curCycle();
189}
190
191void
192TimingSimpleCPU::verifyMemoryMode() const
193{
194    if (!system->isTimingMode()) {
195        fatal("The timing CPU requires the memory system to be in "
196              "'timing' mode.\n");
197    }
198}
199
200void
201TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
202{
203    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
204
205    assert(thread_num == 0);
206    assert(thread);
207
208    assert(_status == Idle);
209
210    notIdleFraction++;
211    _status = BaseSimpleCPU::Running;
212
213    // kick things off by initiating the fetch of the next instruction
214    schedule(fetchEvent, clockEdge(delay));
215}
216
217
218void
219TimingSimpleCPU::suspendContext(ThreadID thread_num)
220{
221    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
222
223    assert(thread_num == 0);
224    assert(thread);
225
226    if (_status == Idle)
227        return;
228
229    assert(_status == BaseSimpleCPU::Running);
230
231    // just change status to Idle... if status != Running,
232    // completeInst() will not initiate fetch of next instruction.
233
234    notIdleFraction--;
235    _status = Idle;
236}
237
238bool
239TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
240{
241    RequestPtr req = pkt->req;
242    if (req->isMmappedIpr()) {
243        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
244        new IprEvent(pkt, this, clockEdge(delay));
245        _status = DcacheWaitResponse;
246        dcache_pkt = NULL;
247    } else if (!dcachePort.sendTimingReq(pkt)) {
248        _status = DcacheRetry;
249        dcache_pkt = pkt;
250    } else {
251        _status = DcacheWaitResponse;
252        // memory system takes ownership of packet
253        dcache_pkt = NULL;
254    }
255    return dcache_pkt == NULL;
256}
257
258void
259TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
260                          bool read)
261{
262    PacketPtr pkt;
263    buildPacket(pkt, req, read);
264    pkt->dataDynamicArray<uint8_t>(data);
265    if (req->getFlags().isSet(Request::NO_ACCESS)) {
266        assert(!dcache_pkt);
267        pkt->makeResponse();
268        completeDataAccess(pkt);
269    } else if (read) {
270        handleReadPacket(pkt);
271    } else {
272        bool do_access = true;  // flag to suppress cache access
273
274        if (req->isLLSC()) {
275            do_access = TheISA::handleLockedWrite(thread, req);
276        } else if (req->isCondSwap()) {
277            assert(res);
278            req->setExtraData(*res);
279        }
280
281        if (do_access) {
282            dcache_pkt = pkt;
283            handleWritePacket();
284        } else {
285            _status = DcacheWaitResponse;
286            completeDataAccess(pkt);
287        }
288    }
289}
290
291void
292TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
293                               RequestPtr req, uint8_t *data, bool read)
294{
295    PacketPtr pkt1, pkt2;
296    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
297    if (req->getFlags().isSet(Request::NO_ACCESS)) {
298        assert(!dcache_pkt);
299        pkt1->makeResponse();
300        completeDataAccess(pkt1);
301    } else if (read) {
302        SplitFragmentSenderState * send_state =
303            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
304        if (handleReadPacket(pkt1)) {
305            send_state->clearFromParent();
306            send_state = dynamic_cast<SplitFragmentSenderState *>(
307                    pkt2->senderState);
308            if (handleReadPacket(pkt2)) {
309                send_state->clearFromParent();
310            }
311        }
312    } else {
313        dcache_pkt = pkt1;
314        SplitFragmentSenderState * send_state =
315            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
316        if (handleWritePacket()) {
317            send_state->clearFromParent();
318            dcache_pkt = pkt2;
319            send_state = dynamic_cast<SplitFragmentSenderState *>(
320                    pkt2->senderState);
321            if (handleWritePacket()) {
322                send_state->clearFromParent();
323            }
324        }
325    }
326}
327
328void
329TimingSimpleCPU::translationFault(Fault fault)
330{
331    // fault may be NoFault in cases where a fault is suppressed,
332    // for instance prefetches.
333    numCycles += curCycle() - previousCycle;
334    previousCycle = curCycle();
335
336    if (traceData) {
337        // Since there was a fault, we shouldn't trace this instruction.
338        delete traceData;
339        traceData = NULL;
340    }
341
342    postExecute();
343
344    advanceInst(fault);
345}
346
347void
348TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
349{
350    MemCmd cmd;
351    if (read) {
352        cmd = MemCmd::ReadReq;
353        if (req->isLLSC())
354            cmd = MemCmd::LoadLockedReq;
355    } else {
356        cmd = MemCmd::WriteReq;
357        if (req->isLLSC()) {
358            cmd = MemCmd::StoreCondReq;
359        } else if (req->isSwap()) {
360            cmd = MemCmd::SwapReq;
361        }
362    }
363    pkt = new Packet(req, cmd);
364}
365
366void
367TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
368        RequestPtr req1, RequestPtr req2, RequestPtr req,
369        uint8_t *data, bool read)
370{
371    pkt1 = pkt2 = NULL;
372
373    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
374
375    if (req->getFlags().isSet(Request::NO_ACCESS)) {
376        buildPacket(pkt1, req, read);
377        return;
378    }
379
380    buildPacket(pkt1, req1, read);
381    buildPacket(pkt2, req2, read);
382
383    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
384    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
385
386    pkt->dataDynamicArray<uint8_t>(data);
387    pkt1->dataStatic<uint8_t>(data);
388    pkt2->dataStatic<uint8_t>(data + req1->getSize());
389
390    SplitMainSenderState * main_send_state = new SplitMainSenderState;
391    pkt->senderState = main_send_state;
392    main_send_state->fragments[0] = pkt1;
393    main_send_state->fragments[1] = pkt2;
394    main_send_state->outstanding = 2;
395    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
396    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
397}
398
399Fault
400TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
401                         unsigned size, unsigned flags)
402{
403    Fault fault;
404    const int asid = 0;
405    const ThreadID tid = 0;
406    const Addr pc = thread->instAddr();
407    unsigned block_size = dcachePort.peerBlockSize();
408    BaseTLB::Mode mode = BaseTLB::Read;
409
410    if (traceData) {
411        traceData->setAddr(addr);
412    }
413
414    RequestPtr req  = new Request(asid, addr, size,
415                                  flags, dataMasterId(), pc, _cpuId, tid);
416
417    Addr split_addr = roundDown(addr + size - 1, block_size);
418    assert(split_addr <= addr || split_addr - addr < block_size);
419
420    _status = DTBWaitResponse;
421    if (split_addr > addr) {
422        RequestPtr req1, req2;
423        assert(!req->isLLSC() && !req->isSwap());
424        req->splitOnVaddr(split_addr, req1, req2);
425
426        WholeTranslationState *state =
427            new WholeTranslationState(req, req1, req2, new uint8_t[size],
428                                      NULL, mode);
429        DataTranslation<TimingSimpleCPU *> *trans1 =
430            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
431        DataTranslation<TimingSimpleCPU *> *trans2 =
432            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
433
434        thread->dtb->translateTiming(req1, tc, trans1, mode);
435        thread->dtb->translateTiming(req2, tc, trans2, mode);
436    } else {
437        WholeTranslationState *state =
438            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
439        DataTranslation<TimingSimpleCPU *> *translation
440            = new DataTranslation<TimingSimpleCPU *>(this, state);
441        thread->dtb->translateTiming(req, tc, translation, mode);
442    }
443
444    return NoFault;
445}
446
447bool
448TimingSimpleCPU::handleWritePacket()
449{
450    RequestPtr req = dcache_pkt->req;
451    if (req->isMmappedIpr()) {
452        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
453        new IprEvent(dcache_pkt, this, clockEdge(delay));
454        _status = DcacheWaitResponse;
455        dcache_pkt = NULL;
456    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
457        _status = DcacheRetry;
458    } else {
459        _status = DcacheWaitResponse;
460        // memory system takes ownership of packet
461        dcache_pkt = NULL;
462    }
463    return dcache_pkt == NULL;
464}
465
466Fault
467TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
468                          Addr addr, unsigned flags, uint64_t *res)
469{
470    uint8_t *newData = new uint8_t[size];
471    memcpy(newData, data, size);
472
473    const int asid = 0;
474    const ThreadID tid = 0;
475    const Addr pc = thread->instAddr();
476    unsigned block_size = dcachePort.peerBlockSize();
477    BaseTLB::Mode mode = BaseTLB::Write;
478
479    if (traceData) {
480        traceData->setAddr(addr);
481    }
482
483    RequestPtr req = new Request(asid, addr, size,
484                                 flags, dataMasterId(), pc, _cpuId, tid);
485
486    Addr split_addr = roundDown(addr + size - 1, block_size);
487    assert(split_addr <= addr || split_addr - addr < block_size);
488
489    _status = DTBWaitResponse;
490    if (split_addr > addr) {
491        RequestPtr req1, req2;
492        assert(!req->isLLSC() && !req->isSwap());
493        req->splitOnVaddr(split_addr, req1, req2);
494
495        WholeTranslationState *state =
496            new WholeTranslationState(req, req1, req2, newData, res, mode);
497        DataTranslation<TimingSimpleCPU *> *trans1 =
498            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
499        DataTranslation<TimingSimpleCPU *> *trans2 =
500            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
501
502        thread->dtb->translateTiming(req1, tc, trans1, mode);
503        thread->dtb->translateTiming(req2, tc, trans2, mode);
504    } else {
505        WholeTranslationState *state =
506            new WholeTranslationState(req, newData, res, mode);
507        DataTranslation<TimingSimpleCPU *> *translation =
508            new DataTranslation<TimingSimpleCPU *>(this, state);
509        thread->dtb->translateTiming(req, tc, translation, mode);
510    }
511
512    // Translation faults will be returned via finishTranslation()
513    return NoFault;
514}
515
516
517void
518TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
519{
520    _status = BaseSimpleCPU::Running;
521
522    if (state->getFault() != NoFault) {
523        if (state->isPrefetch()) {
524            state->setNoFault();
525        }
526        delete [] state->data;
527        state->deleteReqs();
528        translationFault(state->getFault());
529    } else {
530        if (!state->isSplit) {
531            sendData(state->mainReq, state->data, state->res,
532                     state->mode == BaseTLB::Read);
533        } else {
534            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
535                          state->data, state->mode == BaseTLB::Read);
536        }
537    }
538
539    delete state;
540}
541
542
543void
544TimingSimpleCPU::fetch()
545{
546    DPRINTF(SimpleCPU, "Fetch\n");
547
548    if (!curStaticInst || !curStaticInst->isDelayedCommit())
549        checkForInterrupts();
550
551    checkPcEventQueue();
552
553    // We must have just got suspended by a PC event
554    if (_status == Idle)
555        return;
556
557    TheISA::PCState pcState = thread->pcState();
558    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
559
560    if (needToFetch) {
561        _status = BaseSimpleCPU::Running;
562        Request *ifetch_req = new Request();
563        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
564        setupFetchRequest(ifetch_req);
565        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
566        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
567                BaseTLB::Execute);
568    } else {
569        _status = IcacheWaitResponse;
570        completeIfetch(NULL);
571
572        numCycles += curCycle() - previousCycle;
573        previousCycle = curCycle();
574    }
575}
576
577
578void
579TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
580{
581    if (fault == NoFault) {
582        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
583                req->getVaddr(), req->getPaddr());
584        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
585        ifetch_pkt->dataStatic(&inst);
586        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
587
588        if (!icachePort.sendTimingReq(ifetch_pkt)) {
589            // Need to wait for retry
590            _status = IcacheRetry;
591        } else {
592            // Need to wait for cache to respond
593            _status = IcacheWaitResponse;
594            // ownership of packet transferred to memory system
595            ifetch_pkt = NULL;
596        }
597    } else {
598        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
599        delete req;
600        // fetch fault: advance directly to next instruction (fault handler)
601        _status = BaseSimpleCPU::Running;
602        advanceInst(fault);
603    }
604
605    numCycles += curCycle() - previousCycle;
606    previousCycle = curCycle();
607}
608
609
610void
611TimingSimpleCPU::advanceInst(Fault fault)
612{
613    if (_status == Faulting)
614        return;
615
616    if (fault != NoFault) {
617        advancePC(fault);
618        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
619        reschedule(fetchEvent, clockEdge(), true);
620        _status = Faulting;
621        return;
622    }
623
624
625    if (!stayAtPC)
626        advancePC(fault);
627
628    if (tryCompleteDrain())
629            return;
630
631    if (_status == BaseSimpleCPU::Running) {
632        // kick off fetch of next instruction... callback from icache
633        // response will cause that instruction to be executed,
634        // keeping the CPU running.
635        fetch();
636    }
637}
638
639
640void
641TimingSimpleCPU::completeIfetch(PacketPtr pkt)
642{
643    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
644            pkt->getAddr() : 0);
645
646    // received a response from the icache: execute the received
647    // instruction
648
649    assert(!pkt || !pkt->isError());
650    assert(_status == IcacheWaitResponse);
651
652    _status = BaseSimpleCPU::Running;
653
654    numCycles += curCycle() - previousCycle;
655    previousCycle = curCycle();
656
657    preExecute();
658    if (curStaticInst && curStaticInst->isMemRef()) {
659        // load or store: just send to dcache
660        Fault fault = curStaticInst->initiateAcc(this, traceData);
661
662        // If we're not running now the instruction will complete in a dcache
663        // response callback or the instruction faulted and has started an
664        // ifetch
665        if (_status == BaseSimpleCPU::Running) {
666            if (fault != NoFault && traceData) {
667                // If there was a fault, we shouldn't trace this instruction.
668                delete traceData;
669                traceData = NULL;
670            }
671
672            postExecute();
673            // @todo remove me after debugging with legion done
674            if (curStaticInst && (!curStaticInst->isMicroop() ||
675                        curStaticInst->isFirstMicroop()))
676                instCnt++;
677            advanceInst(fault);
678        }
679    } else if (curStaticInst) {
680        // non-memory instruction: execute completely now
681        Fault fault = curStaticInst->execute(this, traceData);
682
683        // keep an instruction count
684        if (fault == NoFault)
685            countInst();
686        else if (traceData && !DTRACE(ExecFaulting)) {
687            delete traceData;
688            traceData = NULL;
689        }
690
691        postExecute();
692        // @todo remove me after debugging with legion done
693        if (curStaticInst && (!curStaticInst->isMicroop() ||
694                    curStaticInst->isFirstMicroop()))
695            instCnt++;
696        advanceInst(fault);
697    } else {
698        advanceInst(NoFault);
699    }
700
701    if (pkt) {
702        delete pkt->req;
703        delete pkt;
704    }
705}
706
707void
708TimingSimpleCPU::IcachePort::ITickEvent::process()
709{
710    cpu->completeIfetch(pkt);
711}
712
713bool
714TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
715{
716    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
717    // delay processing of returned data until next CPU clock edge
718    Tick next_tick = cpu->clockEdge();
719
720    if (next_tick == curTick())
721        cpu->completeIfetch(pkt);
722    else
723        tickEvent.schedule(pkt, next_tick);
724
725    return true;
726}
727
728void
729TimingSimpleCPU::IcachePort::recvRetry()
730{
731    // we shouldn't get a retry unless we have a packet that we're
732    // waiting to transmit
733    assert(cpu->ifetch_pkt != NULL);
734    assert(cpu->_status == IcacheRetry);
735    PacketPtr tmp = cpu->ifetch_pkt;
736    if (sendTimingReq(tmp)) {
737        cpu->_status = IcacheWaitResponse;
738        cpu->ifetch_pkt = NULL;
739    }
740}
741
742void
743TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
744{
745    // received a response from the dcache: complete the load or store
746    // instruction
747    assert(!pkt->isError());
748    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
749           pkt->req->getFlags().isSet(Request::NO_ACCESS));
750
751    numCycles += curCycle() - previousCycle;
752    previousCycle = curCycle();
753
754    if (pkt->senderState) {
755        SplitFragmentSenderState * send_state =
756            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
757        assert(send_state);
758        delete pkt->req;
759        delete pkt;
760        PacketPtr big_pkt = send_state->bigPkt;
761        delete send_state;
762
763        SplitMainSenderState * main_send_state =
764            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
765        assert(main_send_state);
766        // Record the fact that this packet is no longer outstanding.
767        assert(main_send_state->outstanding != 0);
768        main_send_state->outstanding--;
769
770        if (main_send_state->outstanding) {
771            return;
772        } else {
773            delete main_send_state;
774            big_pkt->senderState = NULL;
775            pkt = big_pkt;
776        }
777    }
778
779    _status = BaseSimpleCPU::Running;
780
781    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
782
783    // keep an instruction count
784    if (fault == NoFault)
785        countInst();
786    else if (traceData) {
787        // If there was a fault, we shouldn't trace this instruction.
788        delete traceData;
789        traceData = NULL;
790    }
791
792    // the locked flag may be cleared on the response packet, so check
793    // pkt->req and not pkt to see if it was a load-locked
794    if (pkt->isRead() && pkt->req->isLLSC()) {
795        TheISA::handleLockedRead(thread, pkt->req);
796    }
797
798    delete pkt->req;
799    delete pkt;
800
801    postExecute();
802
803    advanceInst(fault);
804}
805
806bool
807TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
808{
809    // delay processing of returned data until next CPU clock edge
810    Tick next_tick = cpu->clockEdge();
811
812    if (next_tick == curTick()) {
813        cpu->completeDataAccess(pkt);
814    } else {
815        if (!tickEvent.scheduled()) {
816            tickEvent.schedule(pkt, next_tick);
817        } else {
818            // In the case of a split transaction and a cache that is
819            // faster than a CPU we could get two responses before
820            // next_tick expires
821            if (!retryEvent.scheduled())
822                cpu->schedule(retryEvent, next_tick);
823            return false;
824        }
825    }
826
827    return true;
828}
829
830void
831TimingSimpleCPU::DcachePort::DTickEvent::process()
832{
833    cpu->completeDataAccess(pkt);
834}
835
836void
837TimingSimpleCPU::DcachePort::recvRetry()
838{
839    // we shouldn't get a retry unless we have a packet that we're
840    // waiting to transmit
841    assert(cpu->dcache_pkt != NULL);
842    assert(cpu->_status == DcacheRetry);
843    PacketPtr tmp = cpu->dcache_pkt;
844    if (tmp->senderState) {
845        // This is a packet from a split access.
846        SplitFragmentSenderState * send_state =
847            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
848        assert(send_state);
849        PacketPtr big_pkt = send_state->bigPkt;
850
851        SplitMainSenderState * main_send_state =
852            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
853        assert(main_send_state);
854
855        if (sendTimingReq(tmp)) {
856            // If we were able to send without retrying, record that fact
857            // and try sending the other fragment.
858            send_state->clearFromParent();
859            int other_index = main_send_state->getPendingFragment();
860            if (other_index > 0) {
861                tmp = main_send_state->fragments[other_index];
862                cpu->dcache_pkt = tmp;
863                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
864                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
865                    main_send_state->fragments[other_index] = NULL;
866                }
867            } else {
868                cpu->_status = DcacheWaitResponse;
869                // memory system takes ownership of packet
870                cpu->dcache_pkt = NULL;
871            }
872        }
873    } else if (sendTimingReq(tmp)) {
874        cpu->_status = DcacheWaitResponse;
875        // memory system takes ownership of packet
876        cpu->dcache_pkt = NULL;
877    }
878}
879
880TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
881    Tick t)
882    : pkt(_pkt), cpu(_cpu)
883{
884    cpu->schedule(this, t);
885}
886
887void
888TimingSimpleCPU::IprEvent::process()
889{
890    cpu->completeDataAccess(pkt);
891}
892
893const char *
894TimingSimpleCPU::IprEvent::description() const
895{
896    return "Timing Simple CPU Delay IPR event";
897}
898
899
900void
901TimingSimpleCPU::printAddr(Addr a)
902{
903    dcachePort.printAddr(a);
904}
905
906
907////////////////////////////////////////////////////////////////////////
908//
909//  TimingSimpleCPU Simulation Object
910//
911TimingSimpleCPU *
912TimingSimpleCPUParams::create()
913{
914    numThreads = 1;
915    if (!FullSystem && workload.size() != 1)
916        panic("only one workload allowed");
917    return new TimingSimpleCPU(this);
918}
919