timing.cc revision 8949
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "params/TimingSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/full_system.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace TheISA;
62
63void
64TimingSimpleCPU::init()
65{
66    BaseCPU::init();
67
68    // Initialise the ThreadContext's memory proxies
69    tcBase()->initMemProxies(tcBase());
70
71    if (FullSystem) {
72        for (int i = 0; i < threadContexts.size(); ++i) {
73            ThreadContext *tc = threadContexts[i];
74            // initialize CPU, including PC
75            TheISA::initCPU(tc, _cpuId);
76        }
77    }
78}
79
80void
81TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
82{
83    pkt = _pkt;
84    cpu->schedule(this, t);
85}
86
87TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
88    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
89    dcachePort(this), fetchEvent(this)
90{
91    _status = Idle;
92
93    ifetch_pkt = dcache_pkt = NULL;
94    drainEvent = NULL;
95    previousTick = 0;
96    changeState(SimObject::Running);
97    system->totalNumInsts = 0;
98}
99
100
101TimingSimpleCPU::~TimingSimpleCPU()
102{
103}
104
105void
106TimingSimpleCPU::serialize(ostream &os)
107{
108    SimObject::State so_state = SimObject::getState();
109    SERIALIZE_ENUM(so_state);
110    BaseSimpleCPU::serialize(os);
111}
112
113void
114TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
115{
116    SimObject::State so_state;
117    UNSERIALIZE_ENUM(so_state);
118    BaseSimpleCPU::unserialize(cp, section);
119}
120
121unsigned int
122TimingSimpleCPU::drain(Event *drain_event)
123{
124    // TimingSimpleCPU is ready to drain if it's not waiting for
125    // an access to complete.
126    if (_status == Idle || _status == Running || _status == SwitchedOut) {
127        changeState(SimObject::Drained);
128        return 0;
129    } else {
130        changeState(SimObject::Draining);
131        drainEvent = drain_event;
132        return 1;
133    }
134}
135
136void
137TimingSimpleCPU::resume()
138{
139    DPRINTF(SimpleCPU, "Resume\n");
140    if (_status != SwitchedOut && _status != Idle) {
141        assert(system->getMemoryMode() == Enums::timing);
142
143        if (fetchEvent.scheduled())
144           deschedule(fetchEvent);
145
146        schedule(fetchEvent, nextCycle());
147    }
148
149    changeState(SimObject::Running);
150}
151
152void
153TimingSimpleCPU::switchOut()
154{
155    assert(_status == Running || _status == Idle);
156    _status = SwitchedOut;
157    numCycles += tickToCycles(curTick() - previousTick);
158
159    // If we've been scheduled to resume but are then told to switch out,
160    // we'll need to cancel it.
161    if (fetchEvent.scheduled())
162        deschedule(fetchEvent);
163}
164
165
166void
167TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
168{
169    BaseCPU::takeOverFrom(oldCPU);
170
171    // if any of this CPU's ThreadContexts are active, mark the CPU as
172    // running and schedule its tick event.
173    for (int i = 0; i < threadContexts.size(); ++i) {
174        ThreadContext *tc = threadContexts[i];
175        if (tc->status() == ThreadContext::Active && _status != Running) {
176            _status = Running;
177            break;
178        }
179    }
180
181    if (_status != Running) {
182        _status = Idle;
183    }
184    assert(threadContexts.size() == 1);
185    previousTick = curTick();
186}
187
188
189void
190TimingSimpleCPU::activateContext(ThreadID thread_num, int delay)
191{
192    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
193
194    assert(thread_num == 0);
195    assert(thread);
196
197    assert(_status == Idle);
198
199    notIdleFraction++;
200    _status = Running;
201
202    // kick things off by initiating the fetch of the next instruction
203    schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
204}
205
206
207void
208TimingSimpleCPU::suspendContext(ThreadID thread_num)
209{
210    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
211
212    assert(thread_num == 0);
213    assert(thread);
214
215    if (_status == Idle)
216        return;
217
218    assert(_status == Running);
219
220    // just change status to Idle... if status != Running,
221    // completeInst() will not initiate fetch of next instruction.
222
223    notIdleFraction--;
224    _status = Idle;
225}
226
227bool
228TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
229{
230    RequestPtr req = pkt->req;
231    if (req->isMmappedIpr()) {
232        Tick delay;
233        delay = TheISA::handleIprRead(thread->getTC(), pkt);
234        new IprEvent(pkt, this, nextCycle(curTick() + delay));
235        _status = DcacheWaitResponse;
236        dcache_pkt = NULL;
237    } else if (!dcachePort.sendTiming(pkt)) {
238        _status = DcacheRetry;
239        dcache_pkt = pkt;
240    } else {
241        _status = DcacheWaitResponse;
242        // memory system takes ownership of packet
243        dcache_pkt = NULL;
244    }
245    return dcache_pkt == NULL;
246}
247
248void
249TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
250                          bool read)
251{
252    PacketPtr pkt;
253    buildPacket(pkt, req, read);
254    pkt->dataDynamicArray<uint8_t>(data);
255    if (req->getFlags().isSet(Request::NO_ACCESS)) {
256        assert(!dcache_pkt);
257        pkt->makeResponse();
258        completeDataAccess(pkt);
259    } else if (read) {
260        handleReadPacket(pkt);
261    } else {
262        bool do_access = true;  // flag to suppress cache access
263
264        if (req->isLLSC()) {
265            do_access = TheISA::handleLockedWrite(thread, req);
266        } else if (req->isCondSwap()) {
267            assert(res);
268            req->setExtraData(*res);
269        }
270
271        if (do_access) {
272            dcache_pkt = pkt;
273            handleWritePacket();
274        } else {
275            _status = DcacheWaitResponse;
276            completeDataAccess(pkt);
277        }
278    }
279}
280
281void
282TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
283                               RequestPtr req, uint8_t *data, bool read)
284{
285    PacketPtr pkt1, pkt2;
286    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
287    if (req->getFlags().isSet(Request::NO_ACCESS)) {
288        assert(!dcache_pkt);
289        pkt1->makeResponse();
290        completeDataAccess(pkt1);
291    } else if (read) {
292        SplitFragmentSenderState * send_state =
293            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
294        if (handleReadPacket(pkt1)) {
295            send_state->clearFromParent();
296            send_state = dynamic_cast<SplitFragmentSenderState *>(
297                    pkt2->senderState);
298            if (handleReadPacket(pkt2)) {
299                send_state->clearFromParent();
300            }
301        }
302    } else {
303        dcache_pkt = pkt1;
304        SplitFragmentSenderState * send_state =
305            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
306        if (handleWritePacket()) {
307            send_state->clearFromParent();
308            dcache_pkt = pkt2;
309            send_state = dynamic_cast<SplitFragmentSenderState *>(
310                    pkt2->senderState);
311            if (handleWritePacket()) {
312                send_state->clearFromParent();
313            }
314        }
315    }
316}
317
318void
319TimingSimpleCPU::translationFault(Fault fault)
320{
321    // fault may be NoFault in cases where a fault is suppressed,
322    // for instance prefetches.
323    numCycles += tickToCycles(curTick() - previousTick);
324    previousTick = curTick();
325
326    if (traceData) {
327        // Since there was a fault, we shouldn't trace this instruction.
328        delete traceData;
329        traceData = NULL;
330    }
331
332    postExecute();
333
334    if (getState() == SimObject::Draining) {
335        advancePC(fault);
336        completeDrain();
337    } else {
338        advanceInst(fault);
339    }
340}
341
342void
343TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
344{
345    MemCmd cmd;
346    if (read) {
347        cmd = MemCmd::ReadReq;
348        if (req->isLLSC())
349            cmd = MemCmd::LoadLockedReq;
350    } else {
351        cmd = MemCmd::WriteReq;
352        if (req->isLLSC()) {
353            cmd = MemCmd::StoreCondReq;
354        } else if (req->isSwap()) {
355            cmd = MemCmd::SwapReq;
356        }
357    }
358    pkt = new Packet(req, cmd);
359}
360
361void
362TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
363        RequestPtr req1, RequestPtr req2, RequestPtr req,
364        uint8_t *data, bool read)
365{
366    pkt1 = pkt2 = NULL;
367
368    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
369
370    if (req->getFlags().isSet(Request::NO_ACCESS)) {
371        buildPacket(pkt1, req, read);
372        return;
373    }
374
375    buildPacket(pkt1, req1, read);
376    buildPacket(pkt2, req2, read);
377
378    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
379    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
380
381    pkt->dataDynamicArray<uint8_t>(data);
382    pkt1->dataStatic<uint8_t>(data);
383    pkt2->dataStatic<uint8_t>(data + req1->getSize());
384
385    SplitMainSenderState * main_send_state = new SplitMainSenderState;
386    pkt->senderState = main_send_state;
387    main_send_state->fragments[0] = pkt1;
388    main_send_state->fragments[1] = pkt2;
389    main_send_state->outstanding = 2;
390    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
391    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
392}
393
394Fault
395TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
396                         unsigned size, unsigned flags)
397{
398    Fault fault;
399    const int asid = 0;
400    const ThreadID tid = 0;
401    const Addr pc = thread->instAddr();
402    unsigned block_size = dcachePort.peerBlockSize();
403    BaseTLB::Mode mode = BaseTLB::Read;
404
405    if (traceData) {
406        traceData->setAddr(addr);
407    }
408
409    RequestPtr req  = new Request(asid, addr, size,
410                                  flags, dataMasterId(), pc, _cpuId, tid);
411
412    Addr split_addr = roundDown(addr + size - 1, block_size);
413    assert(split_addr <= addr || split_addr - addr < block_size);
414
415    _status = DTBWaitResponse;
416    if (split_addr > addr) {
417        RequestPtr req1, req2;
418        assert(!req->isLLSC() && !req->isSwap());
419        req->splitOnVaddr(split_addr, req1, req2);
420
421        WholeTranslationState *state =
422            new WholeTranslationState(req, req1, req2, new uint8_t[size],
423                                      NULL, mode);
424        DataTranslation<TimingSimpleCPU *> *trans1 =
425            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
426        DataTranslation<TimingSimpleCPU *> *trans2 =
427            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
428
429        thread->dtb->translateTiming(req1, tc, trans1, mode);
430        thread->dtb->translateTiming(req2, tc, trans2, mode);
431    } else {
432        WholeTranslationState *state =
433            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
434        DataTranslation<TimingSimpleCPU *> *translation
435            = new DataTranslation<TimingSimpleCPU *>(this, state);
436        thread->dtb->translateTiming(req, tc, translation, mode);
437    }
438
439    return NoFault;
440}
441
442bool
443TimingSimpleCPU::handleWritePacket()
444{
445    RequestPtr req = dcache_pkt->req;
446    if (req->isMmappedIpr()) {
447        Tick delay;
448        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
449        new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
450        _status = DcacheWaitResponse;
451        dcache_pkt = NULL;
452    } else if (!dcachePort.sendTiming(dcache_pkt)) {
453        _status = DcacheRetry;
454    } else {
455        _status = DcacheWaitResponse;
456        // memory system takes ownership of packet
457        dcache_pkt = NULL;
458    }
459    return dcache_pkt == NULL;
460}
461
462Fault
463TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
464                          Addr addr, unsigned flags, uint64_t *res)
465{
466    uint8_t *newData = new uint8_t[size];
467    memcpy(newData, data, size);
468
469    const int asid = 0;
470    const ThreadID tid = 0;
471    const Addr pc = thread->instAddr();
472    unsigned block_size = dcachePort.peerBlockSize();
473    BaseTLB::Mode mode = BaseTLB::Write;
474
475    if (traceData) {
476        traceData->setAddr(addr);
477    }
478
479    RequestPtr req = new Request(asid, addr, size,
480                                 flags, dataMasterId(), pc, _cpuId, tid);
481
482    Addr split_addr = roundDown(addr + size - 1, block_size);
483    assert(split_addr <= addr || split_addr - addr < block_size);
484
485    _status = DTBWaitResponse;
486    if (split_addr > addr) {
487        RequestPtr req1, req2;
488        assert(!req->isLLSC() && !req->isSwap());
489        req->splitOnVaddr(split_addr, req1, req2);
490
491        WholeTranslationState *state =
492            new WholeTranslationState(req, req1, req2, newData, res, mode);
493        DataTranslation<TimingSimpleCPU *> *trans1 =
494            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
495        DataTranslation<TimingSimpleCPU *> *trans2 =
496            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
497
498        thread->dtb->translateTiming(req1, tc, trans1, mode);
499        thread->dtb->translateTiming(req2, tc, trans2, mode);
500    } else {
501        WholeTranslationState *state =
502            new WholeTranslationState(req, newData, res, mode);
503        DataTranslation<TimingSimpleCPU *> *translation =
504            new DataTranslation<TimingSimpleCPU *>(this, state);
505        thread->dtb->translateTiming(req, tc, translation, mode);
506    }
507
508    // Translation faults will be returned via finishTranslation()
509    return NoFault;
510}
511
512
513void
514TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
515{
516    _status = Running;
517
518    if (state->getFault() != NoFault) {
519        if (state->isPrefetch()) {
520            state->setNoFault();
521        }
522        delete [] state->data;
523        state->deleteReqs();
524        translationFault(state->getFault());
525    } else {
526        if (!state->isSplit) {
527            sendData(state->mainReq, state->data, state->res,
528                     state->mode == BaseTLB::Read);
529        } else {
530            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
531                          state->data, state->mode == BaseTLB::Read);
532        }
533    }
534
535    delete state;
536}
537
538
539void
540TimingSimpleCPU::fetch()
541{
542    DPRINTF(SimpleCPU, "Fetch\n");
543
544    if (!curStaticInst || !curStaticInst->isDelayedCommit())
545        checkForInterrupts();
546
547    checkPcEventQueue();
548
549    // We must have just got suspended by a PC event
550    if (_status == Idle)
551        return;
552
553    TheISA::PCState pcState = thread->pcState();
554    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
555
556    if (needToFetch) {
557        _status = Running;
558        Request *ifetch_req = new Request();
559        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
560        setupFetchRequest(ifetch_req);
561        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
562        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
563                BaseTLB::Execute);
564    } else {
565        _status = IcacheWaitResponse;
566        completeIfetch(NULL);
567
568        numCycles += tickToCycles(curTick() - previousTick);
569        previousTick = curTick();
570    }
571}
572
573
574void
575TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
576{
577    if (fault == NoFault) {
578        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
579                req->getVaddr(), req->getPaddr());
580        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
581        ifetch_pkt->dataStatic(&inst);
582        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
583
584        if (!icachePort.sendTiming(ifetch_pkt)) {
585            // Need to wait for retry
586            _status = IcacheRetry;
587        } else {
588            // Need to wait for cache to respond
589            _status = IcacheWaitResponse;
590            // ownership of packet transferred to memory system
591            ifetch_pkt = NULL;
592        }
593    } else {
594        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
595        delete req;
596        // fetch fault: advance directly to next instruction (fault handler)
597        _status = Running;
598        advanceInst(fault);
599    }
600
601    numCycles += tickToCycles(curTick() - previousTick);
602    previousTick = curTick();
603}
604
605
606void
607TimingSimpleCPU::advanceInst(Fault fault)
608{
609
610    if (_status == Faulting)
611        return;
612
613    if (fault != NoFault) {
614        advancePC(fault);
615        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
616        reschedule(fetchEvent, nextCycle(), true);
617        _status = Faulting;
618        return;
619    }
620
621
622    if (!stayAtPC)
623        advancePC(fault);
624
625    if (_status == Running) {
626        // kick off fetch of next instruction... callback from icache
627        // response will cause that instruction to be executed,
628        // keeping the CPU running.
629        fetch();
630    }
631}
632
633
634void
635TimingSimpleCPU::completeIfetch(PacketPtr pkt)
636{
637    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
638            pkt->getAddr() : 0);
639
640    // received a response from the icache: execute the received
641    // instruction
642
643    assert(!pkt || !pkt->isError());
644    assert(_status == IcacheWaitResponse);
645
646    _status = Running;
647
648    numCycles += tickToCycles(curTick() - previousTick);
649    previousTick = curTick();
650
651    if (getState() == SimObject::Draining) {
652        if (pkt) {
653            delete pkt->req;
654            delete pkt;
655        }
656
657        completeDrain();
658        return;
659    }
660
661    preExecute();
662    if (curStaticInst && curStaticInst->isMemRef()) {
663        // load or store: just send to dcache
664        Fault fault = curStaticInst->initiateAcc(this, traceData);
665
666        // If we're not running now the instruction will complete in a dcache
667        // response callback or the instruction faulted and has started an
668        // ifetch
669        if (_status == Running) {
670            if (fault != NoFault && traceData) {
671                // If there was a fault, we shouldn't trace this instruction.
672                delete traceData;
673                traceData = NULL;
674            }
675
676            postExecute();
677            // @todo remove me after debugging with legion done
678            if (curStaticInst && (!curStaticInst->isMicroop() ||
679                        curStaticInst->isFirstMicroop()))
680                instCnt++;
681            advanceInst(fault);
682        }
683    } else if (curStaticInst) {
684        // non-memory instruction: execute completely now
685        Fault fault = curStaticInst->execute(this, traceData);
686
687        // keep an instruction count
688        if (fault == NoFault)
689            countInst();
690        else if (traceData && !DTRACE(ExecFaulting)) {
691            delete traceData;
692            traceData = NULL;
693        }
694
695        postExecute();
696        // @todo remove me after debugging with legion done
697        if (curStaticInst && (!curStaticInst->isMicroop() ||
698                    curStaticInst->isFirstMicroop()))
699            instCnt++;
700        advanceInst(fault);
701    } else {
702        advanceInst(NoFault);
703    }
704
705    if (pkt) {
706        delete pkt->req;
707        delete pkt;
708    }
709}
710
711void
712TimingSimpleCPU::IcachePort::ITickEvent::process()
713{
714    cpu->completeIfetch(pkt);
715}
716
717bool
718TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
719{
720    assert(pkt->isResponse());
721    if (!pkt->wasNacked()) {
722        DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
723        // delay processing of returned data until next CPU clock edge
724        Tick next_tick = cpu->nextCycle(curTick());
725
726        if (next_tick == curTick())
727            cpu->completeIfetch(pkt);
728        else
729            tickEvent.schedule(pkt, next_tick);
730
731        return true;
732    } else {
733        assert(cpu->_status == IcacheWaitResponse);
734        pkt->reinitNacked();
735        if (!sendTiming(pkt)) {
736            cpu->_status = IcacheRetry;
737            cpu->ifetch_pkt = pkt;
738        }
739    }
740
741    return true;
742}
743
744void
745TimingSimpleCPU::IcachePort::recvRetry()
746{
747    // we shouldn't get a retry unless we have a packet that we're
748    // waiting to transmit
749    assert(cpu->ifetch_pkt != NULL);
750    assert(cpu->_status == IcacheRetry);
751    PacketPtr tmp = cpu->ifetch_pkt;
752    if (sendTiming(tmp)) {
753        cpu->_status = IcacheWaitResponse;
754        cpu->ifetch_pkt = NULL;
755    }
756}
757
758void
759TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
760{
761    // received a response from the dcache: complete the load or store
762    // instruction
763    assert(!pkt->isError());
764    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
765           pkt->req->getFlags().isSet(Request::NO_ACCESS));
766
767    numCycles += tickToCycles(curTick() - previousTick);
768    previousTick = curTick();
769
770    if (pkt->senderState) {
771        SplitFragmentSenderState * send_state =
772            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
773        assert(send_state);
774        delete pkt->req;
775        delete pkt;
776        PacketPtr big_pkt = send_state->bigPkt;
777        delete send_state;
778
779        SplitMainSenderState * main_send_state =
780            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
781        assert(main_send_state);
782        // Record the fact that this packet is no longer outstanding.
783        assert(main_send_state->outstanding != 0);
784        main_send_state->outstanding--;
785
786        if (main_send_state->outstanding) {
787            return;
788        } else {
789            delete main_send_state;
790            big_pkt->senderState = NULL;
791            pkt = big_pkt;
792        }
793    }
794
795    _status = Running;
796
797    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
798
799    // keep an instruction count
800    if (fault == NoFault)
801        countInst();
802    else if (traceData) {
803        // If there was a fault, we shouldn't trace this instruction.
804        delete traceData;
805        traceData = NULL;
806    }
807
808    // the locked flag may be cleared on the response packet, so check
809    // pkt->req and not pkt to see if it was a load-locked
810    if (pkt->isRead() && pkt->req->isLLSC()) {
811        TheISA::handleLockedRead(thread, pkt->req);
812    }
813
814    delete pkt->req;
815    delete pkt;
816
817    postExecute();
818
819    if (getState() == SimObject::Draining) {
820        advancePC(fault);
821        completeDrain();
822
823        return;
824    }
825
826    advanceInst(fault);
827}
828
829
830void
831TimingSimpleCPU::completeDrain()
832{
833    DPRINTF(Config, "Done draining\n");
834    changeState(SimObject::Drained);
835    drainEvent->process();
836}
837
838bool
839TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
840{
841    assert(pkt->isResponse());
842    if (!pkt->wasNacked()) {
843        // delay processing of returned data until next CPU clock edge
844        Tick next_tick = cpu->nextCycle(curTick());
845
846        if (next_tick == curTick()) {
847            cpu->completeDataAccess(pkt);
848        } else {
849            if (!tickEvent.scheduled()) {
850                tickEvent.schedule(pkt, next_tick);
851            } else {
852                // In the case of a split transaction and a cache that is
853                // faster than a CPU we could get two responses before
854                // next_tick expires
855                if (!retryEvent.scheduled())
856                    cpu->schedule(retryEvent, next_tick);
857                return false;
858            }
859        }
860
861        return true;
862    } else  {
863        assert(cpu->_status == DcacheWaitResponse);
864        pkt->reinitNacked();
865        if (!sendTiming(pkt)) {
866            cpu->_status = DcacheRetry;
867            cpu->dcache_pkt = pkt;
868        }
869    }
870
871    return true;
872}
873
874void
875TimingSimpleCPU::DcachePort::DTickEvent::process()
876{
877    cpu->completeDataAccess(pkt);
878}
879
880void
881TimingSimpleCPU::DcachePort::recvRetry()
882{
883    // we shouldn't get a retry unless we have a packet that we're
884    // waiting to transmit
885    assert(cpu->dcache_pkt != NULL);
886    assert(cpu->_status == DcacheRetry);
887    PacketPtr tmp = cpu->dcache_pkt;
888    if (tmp->senderState) {
889        // This is a packet from a split access.
890        SplitFragmentSenderState * send_state =
891            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
892        assert(send_state);
893        PacketPtr big_pkt = send_state->bigPkt;
894
895        SplitMainSenderState * main_send_state =
896            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
897        assert(main_send_state);
898
899        if (sendTiming(tmp)) {
900            // If we were able to send without retrying, record that fact
901            // and try sending the other fragment.
902            send_state->clearFromParent();
903            int other_index = main_send_state->getPendingFragment();
904            if (other_index > 0) {
905                tmp = main_send_state->fragments[other_index];
906                cpu->dcache_pkt = tmp;
907                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
908                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
909                    main_send_state->fragments[other_index] = NULL;
910                }
911            } else {
912                cpu->_status = DcacheWaitResponse;
913                // memory system takes ownership of packet
914                cpu->dcache_pkt = NULL;
915            }
916        }
917    } else if (sendTiming(tmp)) {
918        cpu->_status = DcacheWaitResponse;
919        // memory system takes ownership of packet
920        cpu->dcache_pkt = NULL;
921    }
922}
923
924TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
925    Tick t)
926    : pkt(_pkt), cpu(_cpu)
927{
928    cpu->schedule(this, t);
929}
930
931void
932TimingSimpleCPU::IprEvent::process()
933{
934    cpu->completeDataAccess(pkt);
935}
936
937const char *
938TimingSimpleCPU::IprEvent::description() const
939{
940    return "Timing Simple CPU Delay IPR event";
941}
942
943
944void
945TimingSimpleCPU::printAddr(Addr a)
946{
947    dcachePort.printAddr(a);
948}
949
950
951////////////////////////////////////////////////////////////////////////
952//
953//  TimingSimpleCPU Simulation Object
954//
955TimingSimpleCPU *
956TimingSimpleCPUParams::create()
957{
958    numThreads = 1;
959    if (!FullSystem && workload.size() != 1)
960        panic("only one workload allowed");
961    return new TimingSimpleCPU(this);
962}
963