timing.cc revision 8948
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "params/TimingSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/full_system.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace TheISA;
62
63void
64TimingSimpleCPU::init()
65{
66    BaseCPU::init();
67
68    // Initialise the ThreadContext's memory proxies
69    tcBase()->initMemProxies(tcBase());
70
71    if (FullSystem) {
72        for (int i = 0; i < threadContexts.size(); ++i) {
73            ThreadContext *tc = threadContexts[i];
74            // initialize CPU, including PC
75            TheISA::initCPU(tc, _cpuId);
76        }
77    }
78}
79
80void
81TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
82{
83    pkt = _pkt;
84    cpu->schedule(this, t);
85}
86
87TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
88    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
89    dcachePort(this), fetchEvent(this)
90{
91    _status = Idle;
92
93    ifetch_pkt = dcache_pkt = NULL;
94    drainEvent = NULL;
95    previousTick = 0;
96    changeState(SimObject::Running);
97    system->totalNumInsts = 0;
98}
99
100
101TimingSimpleCPU::~TimingSimpleCPU()
102{
103}
104
105void
106TimingSimpleCPU::serialize(ostream &os)
107{
108    SimObject::State so_state = SimObject::getState();
109    SERIALIZE_ENUM(so_state);
110    BaseSimpleCPU::serialize(os);
111}
112
113void
114TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
115{
116    SimObject::State so_state;
117    UNSERIALIZE_ENUM(so_state);
118    BaseSimpleCPU::unserialize(cp, section);
119}
120
121unsigned int
122TimingSimpleCPU::drain(Event *drain_event)
123{
124    // TimingSimpleCPU is ready to drain if it's not waiting for
125    // an access to complete.
126    if (_status == Idle || _status == Running || _status == SwitchedOut) {
127        changeState(SimObject::Drained);
128        return 0;
129    } else {
130        changeState(SimObject::Draining);
131        drainEvent = drain_event;
132        return 1;
133    }
134}
135
136void
137TimingSimpleCPU::resume()
138{
139    DPRINTF(SimpleCPU, "Resume\n");
140    if (_status != SwitchedOut && _status != Idle) {
141        assert(system->getMemoryMode() == Enums::timing);
142
143        if (fetchEvent.scheduled())
144           deschedule(fetchEvent);
145
146        schedule(fetchEvent, nextCycle());
147    }
148
149    changeState(SimObject::Running);
150}
151
152void
153TimingSimpleCPU::switchOut()
154{
155    assert(_status == Running || _status == Idle);
156    _status = SwitchedOut;
157    numCycles += tickToCycles(curTick() - previousTick);
158
159    // If we've been scheduled to resume but are then told to switch out,
160    // we'll need to cancel it.
161    if (fetchEvent.scheduled())
162        deschedule(fetchEvent);
163}
164
165
166void
167TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
168{
169    BaseCPU::takeOverFrom(oldCPU);
170
171    // if any of this CPU's ThreadContexts are active, mark the CPU as
172    // running and schedule its tick event.
173    for (int i = 0; i < threadContexts.size(); ++i) {
174        ThreadContext *tc = threadContexts[i];
175        if (tc->status() == ThreadContext::Active && _status != Running) {
176            _status = Running;
177            break;
178        }
179    }
180
181    if (_status != Running) {
182        _status = Idle;
183    }
184    assert(threadContexts.size() == 1);
185    previousTick = curTick();
186}
187
188
189void
190TimingSimpleCPU::activateContext(ThreadID thread_num, int delay)
191{
192    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
193
194    assert(thread_num == 0);
195    assert(thread);
196
197    assert(_status == Idle);
198
199    notIdleFraction++;
200    _status = Running;
201
202    // kick things off by initiating the fetch of the next instruction
203    schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
204}
205
206
207void
208TimingSimpleCPU::suspendContext(ThreadID thread_num)
209{
210    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
211
212    assert(thread_num == 0);
213    assert(thread);
214
215    if (_status == Idle)
216        return;
217
218    assert(_status == Running);
219
220    // just change status to Idle... if status != Running,
221    // completeInst() will not initiate fetch of next instruction.
222
223    notIdleFraction--;
224    _status = Idle;
225}
226
227bool
228TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
229{
230    RequestPtr req = pkt->req;
231    if (req->isMmappedIpr()) {
232        Tick delay;
233        delay = TheISA::handleIprRead(thread->getTC(), pkt);
234        new IprEvent(pkt, this, nextCycle(curTick() + delay));
235        _status = DcacheWaitResponse;
236        dcache_pkt = NULL;
237    } else if (!dcachePort.sendTiming(pkt)) {
238        _status = DcacheRetry;
239        dcache_pkt = pkt;
240    } else {
241        _status = DcacheWaitResponse;
242        // memory system takes ownership of packet
243        dcache_pkt = NULL;
244    }
245    return dcache_pkt == NULL;
246}
247
248void
249TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
250                          bool read)
251{
252    PacketPtr pkt;
253    buildPacket(pkt, req, read);
254    pkt->dataDynamicArray<uint8_t>(data);
255    if (req->getFlags().isSet(Request::NO_ACCESS)) {
256        assert(!dcache_pkt);
257        pkt->makeResponse();
258        completeDataAccess(pkt);
259    } else if (read) {
260        handleReadPacket(pkt);
261    } else {
262        bool do_access = true;  // flag to suppress cache access
263
264        if (req->isLLSC()) {
265            do_access = TheISA::handleLockedWrite(thread, req);
266        } else if (req->isCondSwap()) {
267            assert(res);
268            req->setExtraData(*res);
269        }
270
271        if (do_access) {
272            dcache_pkt = pkt;
273            handleWritePacket();
274        } else {
275            _status = DcacheWaitResponse;
276            completeDataAccess(pkt);
277        }
278    }
279}
280
281void
282TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
283                               RequestPtr req, uint8_t *data, bool read)
284{
285    PacketPtr pkt1, pkt2;
286    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
287    if (req->getFlags().isSet(Request::NO_ACCESS)) {
288        assert(!dcache_pkt);
289        pkt1->makeResponse();
290        completeDataAccess(pkt1);
291    } else if (read) {
292        SplitFragmentSenderState * send_state =
293            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
294        if (handleReadPacket(pkt1)) {
295            send_state->clearFromParent();
296            send_state = dynamic_cast<SplitFragmentSenderState *>(
297                    pkt2->senderState);
298            if (handleReadPacket(pkt2)) {
299                send_state->clearFromParent();
300            }
301        }
302    } else {
303        dcache_pkt = pkt1;
304        SplitFragmentSenderState * send_state =
305            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
306        if (handleWritePacket()) {
307            send_state->clearFromParent();
308            dcache_pkt = pkt2;
309            send_state = dynamic_cast<SplitFragmentSenderState *>(
310                    pkt2->senderState);
311            if (handleWritePacket()) {
312                send_state->clearFromParent();
313            }
314        }
315    }
316}
317
318void
319TimingSimpleCPU::translationFault(Fault fault)
320{
321    // fault may be NoFault in cases where a fault is suppressed,
322    // for instance prefetches.
323    numCycles += tickToCycles(curTick() - previousTick);
324    previousTick = curTick();
325
326    if (traceData) {
327        // Since there was a fault, we shouldn't trace this instruction.
328        delete traceData;
329        traceData = NULL;
330    }
331
332    postExecute();
333
334    if (getState() == SimObject::Draining) {
335        advancePC(fault);
336        completeDrain();
337    } else {
338        advanceInst(fault);
339    }
340}
341
342void
343TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
344{
345    MemCmd cmd;
346    if (read) {
347        cmd = MemCmd::ReadReq;
348        if (req->isLLSC())
349            cmd = MemCmd::LoadLockedReq;
350    } else {
351        cmd = MemCmd::WriteReq;
352        if (req->isLLSC()) {
353            cmd = MemCmd::StoreCondReq;
354        } else if (req->isSwap()) {
355            cmd = MemCmd::SwapReq;
356        }
357    }
358    pkt = new Packet(req, cmd, Packet::Broadcast);
359}
360
361void
362TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
363        RequestPtr req1, RequestPtr req2, RequestPtr req,
364        uint8_t *data, bool read)
365{
366    pkt1 = pkt2 = NULL;
367
368    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
369
370    if (req->getFlags().isSet(Request::NO_ACCESS)) {
371        buildPacket(pkt1, req, read);
372        return;
373    }
374
375    buildPacket(pkt1, req1, read);
376    buildPacket(pkt2, req2, read);
377
378    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
379    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
380                               Packet::Broadcast);
381
382    pkt->dataDynamicArray<uint8_t>(data);
383    pkt1->dataStatic<uint8_t>(data);
384    pkt2->dataStatic<uint8_t>(data + req1->getSize());
385
386    SplitMainSenderState * main_send_state = new SplitMainSenderState;
387    pkt->senderState = main_send_state;
388    main_send_state->fragments[0] = pkt1;
389    main_send_state->fragments[1] = pkt2;
390    main_send_state->outstanding = 2;
391    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
392    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
393}
394
395Fault
396TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
397                         unsigned size, unsigned flags)
398{
399    Fault fault;
400    const int asid = 0;
401    const ThreadID tid = 0;
402    const Addr pc = thread->instAddr();
403    unsigned block_size = dcachePort.peerBlockSize();
404    BaseTLB::Mode mode = BaseTLB::Read;
405
406    if (traceData) {
407        traceData->setAddr(addr);
408    }
409
410    RequestPtr req  = new Request(asid, addr, size,
411                                  flags, dataMasterId(), pc, _cpuId, tid);
412
413    Addr split_addr = roundDown(addr + size - 1, block_size);
414    assert(split_addr <= addr || split_addr - addr < block_size);
415
416    _status = DTBWaitResponse;
417    if (split_addr > addr) {
418        RequestPtr req1, req2;
419        assert(!req->isLLSC() && !req->isSwap());
420        req->splitOnVaddr(split_addr, req1, req2);
421
422        WholeTranslationState *state =
423            new WholeTranslationState(req, req1, req2, new uint8_t[size],
424                                      NULL, mode);
425        DataTranslation<TimingSimpleCPU *> *trans1 =
426            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
427        DataTranslation<TimingSimpleCPU *> *trans2 =
428            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
429
430        thread->dtb->translateTiming(req1, tc, trans1, mode);
431        thread->dtb->translateTiming(req2, tc, trans2, mode);
432    } else {
433        WholeTranslationState *state =
434            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
435        DataTranslation<TimingSimpleCPU *> *translation
436            = new DataTranslation<TimingSimpleCPU *>(this, state);
437        thread->dtb->translateTiming(req, tc, translation, mode);
438    }
439
440    return NoFault;
441}
442
443bool
444TimingSimpleCPU::handleWritePacket()
445{
446    RequestPtr req = dcache_pkt->req;
447    if (req->isMmappedIpr()) {
448        Tick delay;
449        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
450        new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
451        _status = DcacheWaitResponse;
452        dcache_pkt = NULL;
453    } else if (!dcachePort.sendTiming(dcache_pkt)) {
454        _status = DcacheRetry;
455    } else {
456        _status = DcacheWaitResponse;
457        // memory system takes ownership of packet
458        dcache_pkt = NULL;
459    }
460    return dcache_pkt == NULL;
461}
462
463Fault
464TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
465                          Addr addr, unsigned flags, uint64_t *res)
466{
467    uint8_t *newData = new uint8_t[size];
468    memcpy(newData, data, size);
469
470    const int asid = 0;
471    const ThreadID tid = 0;
472    const Addr pc = thread->instAddr();
473    unsigned block_size = dcachePort.peerBlockSize();
474    BaseTLB::Mode mode = BaseTLB::Write;
475
476    if (traceData) {
477        traceData->setAddr(addr);
478    }
479
480    RequestPtr req = new Request(asid, addr, size,
481                                 flags, dataMasterId(), pc, _cpuId, tid);
482
483    Addr split_addr = roundDown(addr + size - 1, block_size);
484    assert(split_addr <= addr || split_addr - addr < block_size);
485
486    _status = DTBWaitResponse;
487    if (split_addr > addr) {
488        RequestPtr req1, req2;
489        assert(!req->isLLSC() && !req->isSwap());
490        req->splitOnVaddr(split_addr, req1, req2);
491
492        WholeTranslationState *state =
493            new WholeTranslationState(req, req1, req2, newData, res, mode);
494        DataTranslation<TimingSimpleCPU *> *trans1 =
495            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
496        DataTranslation<TimingSimpleCPU *> *trans2 =
497            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
498
499        thread->dtb->translateTiming(req1, tc, trans1, mode);
500        thread->dtb->translateTiming(req2, tc, trans2, mode);
501    } else {
502        WholeTranslationState *state =
503            new WholeTranslationState(req, newData, res, mode);
504        DataTranslation<TimingSimpleCPU *> *translation =
505            new DataTranslation<TimingSimpleCPU *>(this, state);
506        thread->dtb->translateTiming(req, tc, translation, mode);
507    }
508
509    // Translation faults will be returned via finishTranslation()
510    return NoFault;
511}
512
513
514void
515TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
516{
517    _status = Running;
518
519    if (state->getFault() != NoFault) {
520        if (state->isPrefetch()) {
521            state->setNoFault();
522        }
523        delete [] state->data;
524        state->deleteReqs();
525        translationFault(state->getFault());
526    } else {
527        if (!state->isSplit) {
528            sendData(state->mainReq, state->data, state->res,
529                     state->mode == BaseTLB::Read);
530        } else {
531            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
532                          state->data, state->mode == BaseTLB::Read);
533        }
534    }
535
536    delete state;
537}
538
539
540void
541TimingSimpleCPU::fetch()
542{
543    DPRINTF(SimpleCPU, "Fetch\n");
544
545    if (!curStaticInst || !curStaticInst->isDelayedCommit())
546        checkForInterrupts();
547
548    checkPcEventQueue();
549
550    // We must have just got suspended by a PC event
551    if (_status == Idle)
552        return;
553
554    TheISA::PCState pcState = thread->pcState();
555    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
556
557    if (needToFetch) {
558        _status = Running;
559        Request *ifetch_req = new Request();
560        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
561        setupFetchRequest(ifetch_req);
562        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
563        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
564                BaseTLB::Execute);
565    } else {
566        _status = IcacheWaitResponse;
567        completeIfetch(NULL);
568
569        numCycles += tickToCycles(curTick() - previousTick);
570        previousTick = curTick();
571    }
572}
573
574
575void
576TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
577{
578    if (fault == NoFault) {
579        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
580                req->getVaddr(), req->getPaddr());
581        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
582        ifetch_pkt->dataStatic(&inst);
583        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
584
585        if (!icachePort.sendTiming(ifetch_pkt)) {
586            // Need to wait for retry
587            _status = IcacheRetry;
588        } else {
589            // Need to wait for cache to respond
590            _status = IcacheWaitResponse;
591            // ownership of packet transferred to memory system
592            ifetch_pkt = NULL;
593        }
594    } else {
595        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
596        delete req;
597        // fetch fault: advance directly to next instruction (fault handler)
598        _status = Running;
599        advanceInst(fault);
600    }
601
602    numCycles += tickToCycles(curTick() - previousTick);
603    previousTick = curTick();
604}
605
606
607void
608TimingSimpleCPU::advanceInst(Fault fault)
609{
610
611    if (_status == Faulting)
612        return;
613
614    if (fault != NoFault) {
615        advancePC(fault);
616        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
617        reschedule(fetchEvent, nextCycle(), true);
618        _status = Faulting;
619        return;
620    }
621
622
623    if (!stayAtPC)
624        advancePC(fault);
625
626    if (_status == Running) {
627        // kick off fetch of next instruction... callback from icache
628        // response will cause that instruction to be executed,
629        // keeping the CPU running.
630        fetch();
631    }
632}
633
634
635void
636TimingSimpleCPU::completeIfetch(PacketPtr pkt)
637{
638    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
639            pkt->getAddr() : 0);
640
641    // received a response from the icache: execute the received
642    // instruction
643
644    assert(!pkt || !pkt->isError());
645    assert(_status == IcacheWaitResponse);
646
647    _status = Running;
648
649    numCycles += tickToCycles(curTick() - previousTick);
650    previousTick = curTick();
651
652    if (getState() == SimObject::Draining) {
653        if (pkt) {
654            delete pkt->req;
655            delete pkt;
656        }
657
658        completeDrain();
659        return;
660    }
661
662    preExecute();
663    if (curStaticInst && curStaticInst->isMemRef()) {
664        // load or store: just send to dcache
665        Fault fault = curStaticInst->initiateAcc(this, traceData);
666
667        // If we're not running now the instruction will complete in a dcache
668        // response callback or the instruction faulted and has started an
669        // ifetch
670        if (_status == Running) {
671            if (fault != NoFault && traceData) {
672                // If there was a fault, we shouldn't trace this instruction.
673                delete traceData;
674                traceData = NULL;
675            }
676
677            postExecute();
678            // @todo remove me after debugging with legion done
679            if (curStaticInst && (!curStaticInst->isMicroop() ||
680                        curStaticInst->isFirstMicroop()))
681                instCnt++;
682            advanceInst(fault);
683        }
684    } else if (curStaticInst) {
685        // non-memory instruction: execute completely now
686        Fault fault = curStaticInst->execute(this, traceData);
687
688        // keep an instruction count
689        if (fault == NoFault)
690            countInst();
691        else if (traceData && !DTRACE(ExecFaulting)) {
692            delete traceData;
693            traceData = NULL;
694        }
695
696        postExecute();
697        // @todo remove me after debugging with legion done
698        if (curStaticInst && (!curStaticInst->isMicroop() ||
699                    curStaticInst->isFirstMicroop()))
700            instCnt++;
701        advanceInst(fault);
702    } else {
703        advanceInst(NoFault);
704    }
705
706    if (pkt) {
707        delete pkt->req;
708        delete pkt;
709    }
710}
711
712void
713TimingSimpleCPU::IcachePort::ITickEvent::process()
714{
715    cpu->completeIfetch(pkt);
716}
717
718bool
719TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
720{
721    assert(pkt->isResponse());
722    if (!pkt->wasNacked()) {
723        DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
724        // delay processing of returned data until next CPU clock edge
725        Tick next_tick = cpu->nextCycle(curTick());
726
727        if (next_tick == curTick())
728            cpu->completeIfetch(pkt);
729        else
730            tickEvent.schedule(pkt, next_tick);
731
732        return true;
733    } else {
734        assert(cpu->_status == IcacheWaitResponse);
735        pkt->reinitNacked();
736        if (!sendTiming(pkt)) {
737            cpu->_status = IcacheRetry;
738            cpu->ifetch_pkt = pkt;
739        }
740    }
741
742    return true;
743}
744
745void
746TimingSimpleCPU::IcachePort::recvRetry()
747{
748    // we shouldn't get a retry unless we have a packet that we're
749    // waiting to transmit
750    assert(cpu->ifetch_pkt != NULL);
751    assert(cpu->_status == IcacheRetry);
752    PacketPtr tmp = cpu->ifetch_pkt;
753    if (sendTiming(tmp)) {
754        cpu->_status = IcacheWaitResponse;
755        cpu->ifetch_pkt = NULL;
756    }
757}
758
759void
760TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
761{
762    // received a response from the dcache: complete the load or store
763    // instruction
764    assert(!pkt->isError());
765    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
766           pkt->req->getFlags().isSet(Request::NO_ACCESS));
767
768    numCycles += tickToCycles(curTick() - previousTick);
769    previousTick = curTick();
770
771    if (pkt->senderState) {
772        SplitFragmentSenderState * send_state =
773            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
774        assert(send_state);
775        delete pkt->req;
776        delete pkt;
777        PacketPtr big_pkt = send_state->bigPkt;
778        delete send_state;
779
780        SplitMainSenderState * main_send_state =
781            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
782        assert(main_send_state);
783        // Record the fact that this packet is no longer outstanding.
784        assert(main_send_state->outstanding != 0);
785        main_send_state->outstanding--;
786
787        if (main_send_state->outstanding) {
788            return;
789        } else {
790            delete main_send_state;
791            big_pkt->senderState = NULL;
792            pkt = big_pkt;
793        }
794    }
795
796    _status = Running;
797
798    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
799
800    // keep an instruction count
801    if (fault == NoFault)
802        countInst();
803    else if (traceData) {
804        // If there was a fault, we shouldn't trace this instruction.
805        delete traceData;
806        traceData = NULL;
807    }
808
809    // the locked flag may be cleared on the response packet, so check
810    // pkt->req and not pkt to see if it was a load-locked
811    if (pkt->isRead() && pkt->req->isLLSC()) {
812        TheISA::handleLockedRead(thread, pkt->req);
813    }
814
815    delete pkt->req;
816    delete pkt;
817
818    postExecute();
819
820    if (getState() == SimObject::Draining) {
821        advancePC(fault);
822        completeDrain();
823
824        return;
825    }
826
827    advanceInst(fault);
828}
829
830
831void
832TimingSimpleCPU::completeDrain()
833{
834    DPRINTF(Config, "Done draining\n");
835    changeState(SimObject::Drained);
836    drainEvent->process();
837}
838
839bool
840TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
841{
842    assert(pkt->isResponse());
843    if (!pkt->wasNacked()) {
844        // delay processing of returned data until next CPU clock edge
845        Tick next_tick = cpu->nextCycle(curTick());
846
847        if (next_tick == curTick()) {
848            cpu->completeDataAccess(pkt);
849        } else {
850            if (!tickEvent.scheduled()) {
851                tickEvent.schedule(pkt, next_tick);
852            } else {
853                // In the case of a split transaction and a cache that is
854                // faster than a CPU we could get two responses before
855                // next_tick expires
856                if (!retryEvent.scheduled())
857                    cpu->schedule(retryEvent, next_tick);
858                return false;
859            }
860        }
861
862        return true;
863    } else  {
864        assert(cpu->_status == DcacheWaitResponse);
865        pkt->reinitNacked();
866        if (!sendTiming(pkt)) {
867            cpu->_status = DcacheRetry;
868            cpu->dcache_pkt = pkt;
869        }
870    }
871
872    return true;
873}
874
875void
876TimingSimpleCPU::DcachePort::DTickEvent::process()
877{
878    cpu->completeDataAccess(pkt);
879}
880
881void
882TimingSimpleCPU::DcachePort::recvRetry()
883{
884    // we shouldn't get a retry unless we have a packet that we're
885    // waiting to transmit
886    assert(cpu->dcache_pkt != NULL);
887    assert(cpu->_status == DcacheRetry);
888    PacketPtr tmp = cpu->dcache_pkt;
889    if (tmp->senderState) {
890        // This is a packet from a split access.
891        SplitFragmentSenderState * send_state =
892            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
893        assert(send_state);
894        PacketPtr big_pkt = send_state->bigPkt;
895
896        SplitMainSenderState * main_send_state =
897            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
898        assert(main_send_state);
899
900        if (sendTiming(tmp)) {
901            // If we were able to send without retrying, record that fact
902            // and try sending the other fragment.
903            send_state->clearFromParent();
904            int other_index = main_send_state->getPendingFragment();
905            if (other_index > 0) {
906                tmp = main_send_state->fragments[other_index];
907                cpu->dcache_pkt = tmp;
908                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
909                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
910                    main_send_state->fragments[other_index] = NULL;
911                }
912            } else {
913                cpu->_status = DcacheWaitResponse;
914                // memory system takes ownership of packet
915                cpu->dcache_pkt = NULL;
916            }
917        }
918    } else if (sendTiming(tmp)) {
919        cpu->_status = DcacheWaitResponse;
920        // memory system takes ownership of packet
921        cpu->dcache_pkt = NULL;
922    }
923}
924
925TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
926    Tick t)
927    : pkt(_pkt), cpu(_cpu)
928{
929    cpu->schedule(this, t);
930}
931
932void
933TimingSimpleCPU::IprEvent::process()
934{
935    cpu->completeDataAccess(pkt);
936}
937
938const char *
939TimingSimpleCPU::IprEvent::description() const
940{
941    return "Timing Simple CPU Delay IPR event";
942}
943
944
945void
946TimingSimpleCPU::printAddr(Addr a)
947{
948    dcachePort.printAddr(a);
949}
950
951
952////////////////////////////////////////////////////////////////////////
953//
954//  TimingSimpleCPU Simulation Object
955//
956TimingSimpleCPU *
957TimingSimpleCPUParams::create()
958{
959    numThreads = 1;
960    if (!FullSystem && workload.size() != 1)
961        panic("only one workload allowed");
962    return new TimingSimpleCPU(this);
963}
964