timing.cc revision 8850:ed91b534ed04
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "params/TimingSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/full_system.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace TheISA;
62
63void
64TimingSimpleCPU::init()
65{
66    BaseCPU::init();
67    if (FullSystem) {
68        for (int i = 0; i < threadContexts.size(); ++i) {
69            ThreadContext *tc = threadContexts[i];
70            // initialize CPU, including PC
71            TheISA::initCPU(tc, _cpuId);
72        }
73    }
74
75    // Initialise the ThreadContext's memory proxies
76    tcBase()->initMemProxies(tcBase());
77}
78
79void
80TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
81{
82    pkt = _pkt;
83    cpu->schedule(this, t);
84}
85
86TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
87    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
88    dcachePort(this), fetchEvent(this)
89{
90    _status = Idle;
91
92    ifetch_pkt = dcache_pkt = NULL;
93    drainEvent = NULL;
94    previousTick = 0;
95    changeState(SimObject::Running);
96    system->totalNumInsts = 0;
97}
98
99
100TimingSimpleCPU::~TimingSimpleCPU()
101{
102}
103
104void
105TimingSimpleCPU::serialize(ostream &os)
106{
107    SimObject::State so_state = SimObject::getState();
108    SERIALIZE_ENUM(so_state);
109    BaseSimpleCPU::serialize(os);
110}
111
112void
113TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
114{
115    SimObject::State so_state;
116    UNSERIALIZE_ENUM(so_state);
117    BaseSimpleCPU::unserialize(cp, section);
118}
119
120unsigned int
121TimingSimpleCPU::drain(Event *drain_event)
122{
123    // TimingSimpleCPU is ready to drain if it's not waiting for
124    // an access to complete.
125    if (_status == Idle || _status == Running || _status == SwitchedOut) {
126        changeState(SimObject::Drained);
127        return 0;
128    } else {
129        changeState(SimObject::Draining);
130        drainEvent = drain_event;
131        return 1;
132    }
133}
134
135void
136TimingSimpleCPU::resume()
137{
138    DPRINTF(SimpleCPU, "Resume\n");
139    if (_status != SwitchedOut && _status != Idle) {
140        assert(system->getMemoryMode() == Enums::timing);
141
142        if (fetchEvent.scheduled())
143           deschedule(fetchEvent);
144
145        schedule(fetchEvent, nextCycle());
146    }
147
148    changeState(SimObject::Running);
149}
150
151void
152TimingSimpleCPU::switchOut()
153{
154    assert(_status == Running || _status == Idle);
155    _status = SwitchedOut;
156    numCycles += tickToCycles(curTick() - previousTick);
157
158    // If we've been scheduled to resume but are then told to switch out,
159    // we'll need to cancel it.
160    if (fetchEvent.scheduled())
161        deschedule(fetchEvent);
162}
163
164
165void
166TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
167{
168    BaseCPU::takeOverFrom(oldCPU);
169
170    // if any of this CPU's ThreadContexts are active, mark the CPU as
171    // running and schedule its tick event.
172    for (int i = 0; i < threadContexts.size(); ++i) {
173        ThreadContext *tc = threadContexts[i];
174        if (tc->status() == ThreadContext::Active && _status != Running) {
175            _status = Running;
176            break;
177        }
178    }
179
180    if (_status != Running) {
181        _status = Idle;
182    }
183    assert(threadContexts.size() == 1);
184    previousTick = curTick();
185}
186
187
188void
189TimingSimpleCPU::activateContext(ThreadID thread_num, int delay)
190{
191    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
192
193    assert(thread_num == 0);
194    assert(thread);
195
196    assert(_status == Idle);
197
198    notIdleFraction++;
199    _status = Running;
200
201    // kick things off by initiating the fetch of the next instruction
202    schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
203}
204
205
206void
207TimingSimpleCPU::suspendContext(ThreadID thread_num)
208{
209    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
210
211    assert(thread_num == 0);
212    assert(thread);
213
214    if (_status == Idle)
215        return;
216
217    assert(_status == Running);
218
219    // just change status to Idle... if status != Running,
220    // completeInst() will not initiate fetch of next instruction.
221
222    notIdleFraction--;
223    _status = Idle;
224}
225
226bool
227TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
228{
229    RequestPtr req = pkt->req;
230    if (req->isMmappedIpr()) {
231        Tick delay;
232        delay = TheISA::handleIprRead(thread->getTC(), pkt);
233        new IprEvent(pkt, this, nextCycle(curTick() + delay));
234        _status = DcacheWaitResponse;
235        dcache_pkt = NULL;
236    } else if (!dcachePort.sendTiming(pkt)) {
237        _status = DcacheRetry;
238        dcache_pkt = pkt;
239    } else {
240        _status = DcacheWaitResponse;
241        // memory system takes ownership of packet
242        dcache_pkt = NULL;
243    }
244    return dcache_pkt == NULL;
245}
246
247void
248TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
249                          bool read)
250{
251    PacketPtr pkt;
252    buildPacket(pkt, req, read);
253    pkt->dataDynamicArray<uint8_t>(data);
254    if (req->getFlags().isSet(Request::NO_ACCESS)) {
255        assert(!dcache_pkt);
256        pkt->makeResponse();
257        completeDataAccess(pkt);
258    } else if (read) {
259        handleReadPacket(pkt);
260    } else {
261        bool do_access = true;  // flag to suppress cache access
262
263        if (req->isLLSC()) {
264            do_access = TheISA::handleLockedWrite(thread, req);
265        } else if (req->isCondSwap()) {
266            assert(res);
267            req->setExtraData(*res);
268        }
269
270        if (do_access) {
271            dcache_pkt = pkt;
272            handleWritePacket();
273        } else {
274            _status = DcacheWaitResponse;
275            completeDataAccess(pkt);
276        }
277    }
278}
279
280void
281TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
282                               RequestPtr req, uint8_t *data, bool read)
283{
284    PacketPtr pkt1, pkt2;
285    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
286    if (req->getFlags().isSet(Request::NO_ACCESS)) {
287        assert(!dcache_pkt);
288        pkt1->makeResponse();
289        completeDataAccess(pkt1);
290    } else if (read) {
291        SplitFragmentSenderState * send_state =
292            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
293        if (handleReadPacket(pkt1)) {
294            send_state->clearFromParent();
295            send_state = dynamic_cast<SplitFragmentSenderState *>(
296                    pkt2->senderState);
297            if (handleReadPacket(pkt2)) {
298                send_state->clearFromParent();
299            }
300        }
301    } else {
302        dcache_pkt = pkt1;
303        SplitFragmentSenderState * send_state =
304            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
305        if (handleWritePacket()) {
306            send_state->clearFromParent();
307            dcache_pkt = pkt2;
308            send_state = dynamic_cast<SplitFragmentSenderState *>(
309                    pkt2->senderState);
310            if (handleWritePacket()) {
311                send_state->clearFromParent();
312            }
313        }
314    }
315}
316
317void
318TimingSimpleCPU::translationFault(Fault fault)
319{
320    // fault may be NoFault in cases where a fault is suppressed,
321    // for instance prefetches.
322    numCycles += tickToCycles(curTick() - previousTick);
323    previousTick = curTick();
324
325    if (traceData) {
326        // Since there was a fault, we shouldn't trace this instruction.
327        delete traceData;
328        traceData = NULL;
329    }
330
331    postExecute();
332
333    if (getState() == SimObject::Draining) {
334        advancePC(fault);
335        completeDrain();
336    } else {
337        advanceInst(fault);
338    }
339}
340
341void
342TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
343{
344    MemCmd cmd;
345    if (read) {
346        cmd = MemCmd::ReadReq;
347        if (req->isLLSC())
348            cmd = MemCmd::LoadLockedReq;
349    } else {
350        cmd = MemCmd::WriteReq;
351        if (req->isLLSC()) {
352            cmd = MemCmd::StoreCondReq;
353        } else if (req->isSwap()) {
354            cmd = MemCmd::SwapReq;
355        }
356    }
357    pkt = new Packet(req, cmd, Packet::Broadcast);
358}
359
360void
361TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
362        RequestPtr req1, RequestPtr req2, RequestPtr req,
363        uint8_t *data, bool read)
364{
365    pkt1 = pkt2 = NULL;
366
367    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
368
369    if (req->getFlags().isSet(Request::NO_ACCESS)) {
370        buildPacket(pkt1, req, read);
371        return;
372    }
373
374    buildPacket(pkt1, req1, read);
375    buildPacket(pkt2, req2, read);
376
377    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
378    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
379                               Packet::Broadcast);
380
381    pkt->dataDynamicArray<uint8_t>(data);
382    pkt1->dataStatic<uint8_t>(data);
383    pkt2->dataStatic<uint8_t>(data + req1->getSize());
384
385    SplitMainSenderState * main_send_state = new SplitMainSenderState;
386    pkt->senderState = main_send_state;
387    main_send_state->fragments[0] = pkt1;
388    main_send_state->fragments[1] = pkt2;
389    main_send_state->outstanding = 2;
390    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
391    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
392}
393
394Fault
395TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
396                         unsigned size, unsigned flags)
397{
398    Fault fault;
399    const int asid = 0;
400    const ThreadID tid = 0;
401    const Addr pc = thread->instAddr();
402    unsigned block_size = dcachePort.peerBlockSize();
403    BaseTLB::Mode mode = BaseTLB::Read;
404
405    if (traceData) {
406        traceData->setAddr(addr);
407    }
408
409    RequestPtr req  = new Request(asid, addr, size,
410                                  flags, dataMasterId(), pc, _cpuId, tid);
411
412    Addr split_addr = roundDown(addr + size - 1, block_size);
413    assert(split_addr <= addr || split_addr - addr < block_size);
414
415    _status = DTBWaitResponse;
416    if (split_addr > addr) {
417        RequestPtr req1, req2;
418        assert(!req->isLLSC() && !req->isSwap());
419        req->splitOnVaddr(split_addr, req1, req2);
420
421        WholeTranslationState *state =
422            new WholeTranslationState(req, req1, req2, new uint8_t[size],
423                                      NULL, mode);
424        DataTranslation<TimingSimpleCPU *> *trans1 =
425            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
426        DataTranslation<TimingSimpleCPU *> *trans2 =
427            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
428
429        thread->dtb->translateTiming(req1, tc, trans1, mode);
430        thread->dtb->translateTiming(req2, tc, trans2, mode);
431    } else {
432        WholeTranslationState *state =
433            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
434        DataTranslation<TimingSimpleCPU *> *translation
435            = new DataTranslation<TimingSimpleCPU *>(this, state);
436        thread->dtb->translateTiming(req, tc, translation, mode);
437    }
438
439    return NoFault;
440}
441
442bool
443TimingSimpleCPU::handleWritePacket()
444{
445    RequestPtr req = dcache_pkt->req;
446    if (req->isMmappedIpr()) {
447        Tick delay;
448        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
449        new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
450        _status = DcacheWaitResponse;
451        dcache_pkt = NULL;
452    } else if (!dcachePort.sendTiming(dcache_pkt)) {
453        _status = DcacheRetry;
454    } else {
455        _status = DcacheWaitResponse;
456        // memory system takes ownership of packet
457        dcache_pkt = NULL;
458    }
459    return dcache_pkt == NULL;
460}
461
462Fault
463TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
464                          Addr addr, unsigned flags, uint64_t *res)
465{
466    uint8_t *newData = new uint8_t[size];
467    memcpy(newData, data, size);
468
469    const int asid = 0;
470    const ThreadID tid = 0;
471    const Addr pc = thread->instAddr();
472    unsigned block_size = dcachePort.peerBlockSize();
473    BaseTLB::Mode mode = BaseTLB::Write;
474
475    if (traceData) {
476        traceData->setAddr(addr);
477    }
478
479    RequestPtr req = new Request(asid, addr, size,
480                                 flags, dataMasterId(), pc, _cpuId, tid);
481
482    Addr split_addr = roundDown(addr + size - 1, block_size);
483    assert(split_addr <= addr || split_addr - addr < block_size);
484
485    _status = DTBWaitResponse;
486    if (split_addr > addr) {
487        RequestPtr req1, req2;
488        assert(!req->isLLSC() && !req->isSwap());
489        req->splitOnVaddr(split_addr, req1, req2);
490
491        WholeTranslationState *state =
492            new WholeTranslationState(req, req1, req2, newData, res, mode);
493        DataTranslation<TimingSimpleCPU *> *trans1 =
494            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
495        DataTranslation<TimingSimpleCPU *> *trans2 =
496            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
497
498        thread->dtb->translateTiming(req1, tc, trans1, mode);
499        thread->dtb->translateTiming(req2, tc, trans2, mode);
500    } else {
501        WholeTranslationState *state =
502            new WholeTranslationState(req, newData, res, mode);
503        DataTranslation<TimingSimpleCPU *> *translation =
504            new DataTranslation<TimingSimpleCPU *>(this, state);
505        thread->dtb->translateTiming(req, tc, translation, mode);
506    }
507
508    // Translation faults will be returned via finishTranslation()
509    return NoFault;
510}
511
512
513void
514TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
515{
516    _status = Running;
517
518    if (state->getFault() != NoFault) {
519        if (state->isPrefetch()) {
520            state->setNoFault();
521        }
522        delete [] state->data;
523        state->deleteReqs();
524        translationFault(state->getFault());
525    } else {
526        if (!state->isSplit) {
527            sendData(state->mainReq, state->data, state->res,
528                     state->mode == BaseTLB::Read);
529        } else {
530            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
531                          state->data, state->mode == BaseTLB::Read);
532        }
533    }
534
535    delete state;
536}
537
538
539void
540TimingSimpleCPU::fetch()
541{
542    DPRINTF(SimpleCPU, "Fetch\n");
543
544    if (!curStaticInst || !curStaticInst->isDelayedCommit())
545        checkForInterrupts();
546
547    checkPcEventQueue();
548
549    // We must have just got suspended by a PC event
550    if (_status == Idle)
551        return;
552
553    TheISA::PCState pcState = thread->pcState();
554    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
555
556    if (needToFetch) {
557        _status = Running;
558        Request *ifetch_req = new Request();
559        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
560        setupFetchRequest(ifetch_req);
561        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
562        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
563                BaseTLB::Execute);
564    } else {
565        _status = IcacheWaitResponse;
566        completeIfetch(NULL);
567
568        numCycles += tickToCycles(curTick() - previousTick);
569        previousTick = curTick();
570    }
571}
572
573
574void
575TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
576{
577    if (fault == NoFault) {
578        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
579                req->getVaddr(), req->getPaddr());
580        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
581        ifetch_pkt->dataStatic(&inst);
582        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
583
584        if (!icachePort.sendTiming(ifetch_pkt)) {
585            // Need to wait for retry
586            _status = IcacheRetry;
587        } else {
588            // Need to wait for cache to respond
589            _status = IcacheWaitResponse;
590            // ownership of packet transferred to memory system
591            ifetch_pkt = NULL;
592        }
593    } else {
594        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
595        delete req;
596        // fetch fault: advance directly to next instruction (fault handler)
597        _status = Running;
598        advanceInst(fault);
599    }
600
601    numCycles += tickToCycles(curTick() - previousTick);
602    previousTick = curTick();
603}
604
605
606void
607TimingSimpleCPU::advanceInst(Fault fault)
608{
609
610    if (_status == Faulting)
611        return;
612
613    if (fault != NoFault) {
614        advancePC(fault);
615        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
616        reschedule(fetchEvent, nextCycle(), true);
617        _status = Faulting;
618        return;
619    }
620
621
622    if (!stayAtPC)
623        advancePC(fault);
624
625    if (_status == Running) {
626        // kick off fetch of next instruction... callback from icache
627        // response will cause that instruction to be executed,
628        // keeping the CPU running.
629        fetch();
630    }
631}
632
633
634void
635TimingSimpleCPU::completeIfetch(PacketPtr pkt)
636{
637    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
638            pkt->getAddr() : 0);
639
640    // received a response from the icache: execute the received
641    // instruction
642
643    assert(!pkt || !pkt->isError());
644    assert(_status == IcacheWaitResponse);
645
646    _status = Running;
647
648    numCycles += tickToCycles(curTick() - previousTick);
649    previousTick = curTick();
650
651    if (getState() == SimObject::Draining) {
652        if (pkt) {
653            delete pkt->req;
654            delete pkt;
655        }
656
657        completeDrain();
658        return;
659    }
660
661    preExecute();
662    if (curStaticInst && curStaticInst->isMemRef()) {
663        // load or store: just send to dcache
664        Fault fault = curStaticInst->initiateAcc(this, traceData);
665
666        // If we're not running now the instruction will complete in a dcache
667        // response callback or the instruction faulted and has started an
668        // ifetch
669        if (_status == Running) {
670            if (fault != NoFault && traceData) {
671                // If there was a fault, we shouldn't trace this instruction.
672                delete traceData;
673                traceData = NULL;
674            }
675
676            postExecute();
677            // @todo remove me after debugging with legion done
678            if (curStaticInst && (!curStaticInst->isMicroop() ||
679                        curStaticInst->isFirstMicroop()))
680                instCnt++;
681            advanceInst(fault);
682        }
683    } else if (curStaticInst) {
684        // non-memory instruction: execute completely now
685        Fault fault = curStaticInst->execute(this, traceData);
686
687        // keep an instruction count
688        if (fault == NoFault)
689            countInst();
690        else if (traceData && !DTRACE(ExecFaulting)) {
691            delete traceData;
692            traceData = NULL;
693        }
694
695        postExecute();
696        // @todo remove me after debugging with legion done
697        if (curStaticInst && (!curStaticInst->isMicroop() ||
698                    curStaticInst->isFirstMicroop()))
699            instCnt++;
700        advanceInst(fault);
701    } else {
702        advanceInst(NoFault);
703    }
704
705    if (pkt) {
706        delete pkt->req;
707        delete pkt;
708    }
709}
710
711void
712TimingSimpleCPU::IcachePort::ITickEvent::process()
713{
714    cpu->completeIfetch(pkt);
715}
716
717bool
718TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
719{
720    if (pkt->isResponse() && !pkt->wasNacked()) {
721        DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
722        // delay processing of returned data until next CPU clock edge
723        Tick next_tick = cpu->nextCycle(curTick());
724
725        if (next_tick == curTick())
726            cpu->completeIfetch(pkt);
727        else
728            tickEvent.schedule(pkt, next_tick);
729
730        return true;
731    } else if (pkt->wasNacked()) {
732        assert(cpu->_status == IcacheWaitResponse);
733        pkt->reinitNacked();
734        if (!sendTiming(pkt)) {
735            cpu->_status = IcacheRetry;
736            cpu->ifetch_pkt = pkt;
737        }
738    }
739    //Snooping a Coherence Request, do nothing
740    return true;
741}
742
743void
744TimingSimpleCPU::IcachePort::recvRetry()
745{
746    // we shouldn't get a retry unless we have a packet that we're
747    // waiting to transmit
748    assert(cpu->ifetch_pkt != NULL);
749    assert(cpu->_status == IcacheRetry);
750    PacketPtr tmp = cpu->ifetch_pkt;
751    if (sendTiming(tmp)) {
752        cpu->_status = IcacheWaitResponse;
753        cpu->ifetch_pkt = NULL;
754    }
755}
756
757void
758TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
759{
760    // received a response from the dcache: complete the load or store
761    // instruction
762    assert(!pkt->isError());
763    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
764           pkt->req->getFlags().isSet(Request::NO_ACCESS));
765
766    numCycles += tickToCycles(curTick() - previousTick);
767    previousTick = curTick();
768
769    if (pkt->senderState) {
770        SplitFragmentSenderState * send_state =
771            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
772        assert(send_state);
773        delete pkt->req;
774        delete pkt;
775        PacketPtr big_pkt = send_state->bigPkt;
776        delete send_state;
777
778        SplitMainSenderState * main_send_state =
779            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
780        assert(main_send_state);
781        // Record the fact that this packet is no longer outstanding.
782        assert(main_send_state->outstanding != 0);
783        main_send_state->outstanding--;
784
785        if (main_send_state->outstanding) {
786            return;
787        } else {
788            delete main_send_state;
789            big_pkt->senderState = NULL;
790            pkt = big_pkt;
791        }
792    }
793
794    _status = Running;
795
796    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
797
798    // keep an instruction count
799    if (fault == NoFault)
800        countInst();
801    else if (traceData) {
802        // If there was a fault, we shouldn't trace this instruction.
803        delete traceData;
804        traceData = NULL;
805    }
806
807    // the locked flag may be cleared on the response packet, so check
808    // pkt->req and not pkt to see if it was a load-locked
809    if (pkt->isRead() && pkt->req->isLLSC()) {
810        TheISA::handleLockedRead(thread, pkt->req);
811    }
812
813    delete pkt->req;
814    delete pkt;
815
816    postExecute();
817
818    if (getState() == SimObject::Draining) {
819        advancePC(fault);
820        completeDrain();
821
822        return;
823    }
824
825    advanceInst(fault);
826}
827
828
829void
830TimingSimpleCPU::completeDrain()
831{
832    DPRINTF(Config, "Done draining\n");
833    changeState(SimObject::Drained);
834    drainEvent->process();
835}
836
837bool
838TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
839{
840    if (pkt->isResponse() && !pkt->wasNacked()) {
841        // delay processing of returned data until next CPU clock edge
842        Tick next_tick = cpu->nextCycle(curTick());
843
844        if (next_tick == curTick()) {
845            cpu->completeDataAccess(pkt);
846        } else {
847            if (!tickEvent.scheduled()) {
848                tickEvent.schedule(pkt, next_tick);
849            } else {
850                // In the case of a split transaction and a cache that is
851                // faster than a CPU we could get two responses before
852                // next_tick expires
853                if (!retryEvent.scheduled())
854                    cpu->schedule(retryEvent, next_tick);
855                return false;
856            }
857        }
858
859        return true;
860    }
861    else if (pkt->wasNacked()) {
862        assert(cpu->_status == DcacheWaitResponse);
863        pkt->reinitNacked();
864        if (!sendTiming(pkt)) {
865            cpu->_status = DcacheRetry;
866            cpu->dcache_pkt = pkt;
867        }
868    }
869    //Snooping a Coherence Request, do nothing
870    return true;
871}
872
873void
874TimingSimpleCPU::DcachePort::DTickEvent::process()
875{
876    cpu->completeDataAccess(pkt);
877}
878
879void
880TimingSimpleCPU::DcachePort::recvRetry()
881{
882    // we shouldn't get a retry unless we have a packet that we're
883    // waiting to transmit
884    assert(cpu->dcache_pkt != NULL);
885    assert(cpu->_status == DcacheRetry);
886    PacketPtr tmp = cpu->dcache_pkt;
887    if (tmp->senderState) {
888        // This is a packet from a split access.
889        SplitFragmentSenderState * send_state =
890            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
891        assert(send_state);
892        PacketPtr big_pkt = send_state->bigPkt;
893
894        SplitMainSenderState * main_send_state =
895            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
896        assert(main_send_state);
897
898        if (sendTiming(tmp)) {
899            // If we were able to send without retrying, record that fact
900            // and try sending the other fragment.
901            send_state->clearFromParent();
902            int other_index = main_send_state->getPendingFragment();
903            if (other_index > 0) {
904                tmp = main_send_state->fragments[other_index];
905                cpu->dcache_pkt = tmp;
906                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
907                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
908                    main_send_state->fragments[other_index] = NULL;
909                }
910            } else {
911                cpu->_status = DcacheWaitResponse;
912                // memory system takes ownership of packet
913                cpu->dcache_pkt = NULL;
914            }
915        }
916    } else if (sendTiming(tmp)) {
917        cpu->_status = DcacheWaitResponse;
918        // memory system takes ownership of packet
919        cpu->dcache_pkt = NULL;
920    }
921}
922
923TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
924    Tick t)
925    : pkt(_pkt), cpu(_cpu)
926{
927    cpu->schedule(this, t);
928}
929
930void
931TimingSimpleCPU::IprEvent::process()
932{
933    cpu->completeDataAccess(pkt);
934}
935
936const char *
937TimingSimpleCPU::IprEvent::description() const
938{
939    return "Timing Simple CPU Delay IPR event";
940}
941
942
943void
944TimingSimpleCPU::printAddr(Addr a)
945{
946    dcachePort.printAddr(a);
947}
948
949
950////////////////////////////////////////////////////////////////////////
951//
952//  TimingSimpleCPU Simulation Object
953//
954TimingSimpleCPU *
955TimingSimpleCPUParams::create()
956{
957    numThreads = 1;
958    if (!FullSystem && workload.size() != 1)
959        panic("only one workload allowed");
960    return new TimingSimpleCPU(this);
961}
962