timing.cc revision 8443:530ff1bc8d70
1/*
2 * Copyright (c) 2010 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "params/TimingSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/system.hh"
58
59using namespace std;
60using namespace TheISA;
61
62Port *
63TimingSimpleCPU::getPort(const std::string &if_name, int idx)
64{
65    if (if_name == "dcache_port")
66        return &dcachePort;
67    else if (if_name == "icache_port")
68        return &icachePort;
69    else
70        panic("No Such Port\n");
71}
72
73void
74TimingSimpleCPU::init()
75{
76    BaseCPU::init();
77#if FULL_SYSTEM
78    for (int i = 0; i < threadContexts.size(); ++i) {
79        ThreadContext *tc = threadContexts[i];
80
81        // initialize CPU, including PC
82        TheISA::initCPU(tc, _cpuId);
83    }
84#endif
85}
86
87Tick
88TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
89{
90    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
91    return curTick();
92}
93
94void
95TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
96{
97    //No internal storage to update, jusst return
98    return;
99}
100
101void
102TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
103{
104    if (status == RangeChange) {
105        if (!snoopRangeSent) {
106            snoopRangeSent = true;
107            sendStatusChange(Port::RangeChange);
108        }
109        return;
110    }
111
112    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
113}
114
115
116void
117TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
118{
119    pkt = _pkt;
120    cpu->schedule(this, t);
121}
122
123TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
124    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
125    dcachePort(this, p->clock), fetchEvent(this)
126{
127    _status = Idle;
128
129    icachePort.snoopRangeSent = false;
130    dcachePort.snoopRangeSent = false;
131
132    ifetch_pkt = dcache_pkt = NULL;
133    drainEvent = NULL;
134    previousTick = 0;
135    changeState(SimObject::Running);
136    system->totalNumInsts = 0;
137}
138
139
140TimingSimpleCPU::~TimingSimpleCPU()
141{
142}
143
144void
145TimingSimpleCPU::serialize(ostream &os)
146{
147    SimObject::State so_state = SimObject::getState();
148    SERIALIZE_ENUM(so_state);
149    BaseSimpleCPU::serialize(os);
150}
151
152void
153TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
154{
155    SimObject::State so_state;
156    UNSERIALIZE_ENUM(so_state);
157    BaseSimpleCPU::unserialize(cp, section);
158}
159
160unsigned int
161TimingSimpleCPU::drain(Event *drain_event)
162{
163    // TimingSimpleCPU is ready to drain if it's not waiting for
164    // an access to complete.
165    if (_status == Idle || _status == Running || _status == SwitchedOut) {
166        changeState(SimObject::Drained);
167        return 0;
168    } else {
169        changeState(SimObject::Draining);
170        drainEvent = drain_event;
171        return 1;
172    }
173}
174
175void
176TimingSimpleCPU::resume()
177{
178    DPRINTF(SimpleCPU, "Resume\n");
179    if (_status != SwitchedOut && _status != Idle) {
180        assert(system->getMemoryMode() == Enums::timing);
181
182        if (fetchEvent.scheduled())
183           deschedule(fetchEvent);
184
185        schedule(fetchEvent, nextCycle());
186    }
187
188    changeState(SimObject::Running);
189}
190
191void
192TimingSimpleCPU::switchOut()
193{
194    assert(_status == Running || _status == Idle);
195    _status = SwitchedOut;
196    numCycles += tickToCycles(curTick() - previousTick);
197
198    // If we've been scheduled to resume but are then told to switch out,
199    // we'll need to cancel it.
200    if (fetchEvent.scheduled())
201        deschedule(fetchEvent);
202}
203
204
205void
206TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
207{
208    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
209
210    // if any of this CPU's ThreadContexts are active, mark the CPU as
211    // running and schedule its tick event.
212    for (int i = 0; i < threadContexts.size(); ++i) {
213        ThreadContext *tc = threadContexts[i];
214        if (tc->status() == ThreadContext::Active && _status != Running) {
215            _status = Running;
216            break;
217        }
218    }
219
220    if (_status != Running) {
221        _status = Idle;
222    }
223    assert(threadContexts.size() == 1);
224    previousTick = curTick();
225}
226
227
228void
229TimingSimpleCPU::activateContext(int thread_num, int delay)
230{
231    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
232
233    assert(thread_num == 0);
234    assert(thread);
235
236    assert(_status == Idle);
237
238    notIdleFraction++;
239    _status = Running;
240
241    // kick things off by initiating the fetch of the next instruction
242    schedule(fetchEvent, nextCycle(curTick() + ticks(delay)));
243}
244
245
246void
247TimingSimpleCPU::suspendContext(int thread_num)
248{
249    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    if (_status == Idle)
255        return;
256
257    assert(_status == Running);
258
259    // just change status to Idle... if status != Running,
260    // completeInst() will not initiate fetch of next instruction.
261
262    notIdleFraction--;
263    _status = Idle;
264}
265
266bool
267TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
268{
269    RequestPtr req = pkt->req;
270    if (req->isMmappedIpr()) {
271        Tick delay;
272        delay = TheISA::handleIprRead(thread->getTC(), pkt);
273        new IprEvent(pkt, this, nextCycle(curTick() + delay));
274        _status = DcacheWaitResponse;
275        dcache_pkt = NULL;
276    } else if (!dcachePort.sendTiming(pkt)) {
277        _status = DcacheRetry;
278        dcache_pkt = pkt;
279    } else {
280        _status = DcacheWaitResponse;
281        // memory system takes ownership of packet
282        dcache_pkt = NULL;
283    }
284    return dcache_pkt == NULL;
285}
286
287void
288TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
289                          bool read)
290{
291    PacketPtr pkt;
292    buildPacket(pkt, req, read);
293    pkt->dataDynamicArray<uint8_t>(data);
294    if (req->getFlags().isSet(Request::NO_ACCESS)) {
295        assert(!dcache_pkt);
296        pkt->makeResponse();
297        completeDataAccess(pkt);
298    } else if (read) {
299        handleReadPacket(pkt);
300    } else {
301        bool do_access = true;  // flag to suppress cache access
302
303        if (req->isLLSC()) {
304            do_access = TheISA::handleLockedWrite(thread, req);
305        } else if (req->isCondSwap()) {
306            assert(res);
307            req->setExtraData(*res);
308        }
309
310        if (do_access) {
311            dcache_pkt = pkt;
312            handleWritePacket();
313        } else {
314            _status = DcacheWaitResponse;
315            completeDataAccess(pkt);
316        }
317    }
318}
319
320void
321TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
322                               RequestPtr req, uint8_t *data, bool read)
323{
324    PacketPtr pkt1, pkt2;
325    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
326    if (req->getFlags().isSet(Request::NO_ACCESS)) {
327        assert(!dcache_pkt);
328        pkt1->makeResponse();
329        completeDataAccess(pkt1);
330    } else if (read) {
331        SplitFragmentSenderState * send_state =
332            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
333        if (handleReadPacket(pkt1)) {
334            send_state->clearFromParent();
335            send_state = dynamic_cast<SplitFragmentSenderState *>(
336                    pkt2->senderState);
337            if (handleReadPacket(pkt2)) {
338                send_state->clearFromParent();
339            }
340        }
341    } else {
342        dcache_pkt = pkt1;
343        SplitFragmentSenderState * send_state =
344            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
345        if (handleWritePacket()) {
346            send_state->clearFromParent();
347            dcache_pkt = pkt2;
348            send_state = dynamic_cast<SplitFragmentSenderState *>(
349                    pkt2->senderState);
350            if (handleWritePacket()) {
351                send_state->clearFromParent();
352            }
353        }
354    }
355}
356
357void
358TimingSimpleCPU::translationFault(Fault fault)
359{
360    // fault may be NoFault in cases where a fault is suppressed,
361    // for instance prefetches.
362    numCycles += tickToCycles(curTick() - previousTick);
363    previousTick = curTick();
364
365    if (traceData) {
366        // Since there was a fault, we shouldn't trace this instruction.
367        delete traceData;
368        traceData = NULL;
369    }
370
371    postExecute();
372
373    if (getState() == SimObject::Draining) {
374        advancePC(fault);
375        completeDrain();
376    } else {
377        advanceInst(fault);
378    }
379}
380
381void
382TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
383{
384    MemCmd cmd;
385    if (read) {
386        cmd = MemCmd::ReadReq;
387        if (req->isLLSC())
388            cmd = MemCmd::LoadLockedReq;
389    } else {
390        cmd = MemCmd::WriteReq;
391        if (req->isLLSC()) {
392            cmd = MemCmd::StoreCondReq;
393        } else if (req->isSwap()) {
394            cmd = MemCmd::SwapReq;
395        }
396    }
397    pkt = new Packet(req, cmd, Packet::Broadcast);
398}
399
400void
401TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
402        RequestPtr req1, RequestPtr req2, RequestPtr req,
403        uint8_t *data, bool read)
404{
405    pkt1 = pkt2 = NULL;
406
407    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
408
409    if (req->getFlags().isSet(Request::NO_ACCESS)) {
410        buildPacket(pkt1, req, read);
411        return;
412    }
413
414    buildPacket(pkt1, req1, read);
415    buildPacket(pkt2, req2, read);
416
417    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
418    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
419                               Packet::Broadcast);
420
421    pkt->dataDynamicArray<uint8_t>(data);
422    pkt1->dataStatic<uint8_t>(data);
423    pkt2->dataStatic<uint8_t>(data + req1->getSize());
424
425    SplitMainSenderState * main_send_state = new SplitMainSenderState;
426    pkt->senderState = main_send_state;
427    main_send_state->fragments[0] = pkt1;
428    main_send_state->fragments[1] = pkt2;
429    main_send_state->outstanding = 2;
430    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
431    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
432}
433
434Fault
435TimingSimpleCPU::readBytes(Addr addr, uint8_t *data,
436                           unsigned size, unsigned flags)
437{
438    Fault fault;
439    const int asid = 0;
440    const ThreadID tid = 0;
441    const Addr pc = thread->instAddr();
442    unsigned block_size = dcachePort.peerBlockSize();
443    BaseTLB::Mode mode = BaseTLB::Read;
444
445    if (traceData) {
446        traceData->setAddr(addr);
447    }
448
449    RequestPtr req  = new Request(asid, addr, size,
450                                  flags, pc, _cpuId, tid);
451
452    Addr split_addr = roundDown(addr + size - 1, block_size);
453    assert(split_addr <= addr || split_addr - addr < block_size);
454
455    _status = DTBWaitResponse;
456    if (split_addr > addr) {
457        RequestPtr req1, req2;
458        assert(!req->isLLSC() && !req->isSwap());
459        req->splitOnVaddr(split_addr, req1, req2);
460
461        WholeTranslationState *state =
462            new WholeTranslationState(req, req1, req2, new uint8_t[size],
463                                      NULL, mode);
464        DataTranslation<TimingSimpleCPU> *trans1 =
465            new DataTranslation<TimingSimpleCPU>(this, state, 0);
466        DataTranslation<TimingSimpleCPU> *trans2 =
467            new DataTranslation<TimingSimpleCPU>(this, state, 1);
468
469        thread->dtb->translateTiming(req1, tc, trans1, mode);
470        thread->dtb->translateTiming(req2, tc, trans2, mode);
471    } else {
472        WholeTranslationState *state =
473            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
474        DataTranslation<TimingSimpleCPU> *translation
475            = new DataTranslation<TimingSimpleCPU>(this, state);
476        thread->dtb->translateTiming(req, tc, translation, mode);
477    }
478
479    return NoFault;
480}
481
482bool
483TimingSimpleCPU::handleWritePacket()
484{
485    RequestPtr req = dcache_pkt->req;
486    if (req->isMmappedIpr()) {
487        Tick delay;
488        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
489        new IprEvent(dcache_pkt, this, nextCycle(curTick() + delay));
490        _status = DcacheWaitResponse;
491        dcache_pkt = NULL;
492    } else if (!dcachePort.sendTiming(dcache_pkt)) {
493        _status = DcacheRetry;
494    } else {
495        _status = DcacheWaitResponse;
496        // memory system takes ownership of packet
497        dcache_pkt = NULL;
498    }
499    return dcache_pkt == NULL;
500}
501
502Fault
503TimingSimpleCPU::writeBytes(uint8_t *data, unsigned size,
504                            Addr addr, unsigned flags, uint64_t *res)
505{
506    uint8_t *newData = new uint8_t[size];
507    memcpy(newData, data, size);
508
509    const int asid = 0;
510    const ThreadID tid = 0;
511    const Addr pc = thread->instAddr();
512    unsigned block_size = dcachePort.peerBlockSize();
513    BaseTLB::Mode mode = BaseTLB::Write;
514
515    if (traceData) {
516        traceData->setAddr(addr);
517    }
518
519    RequestPtr req = new Request(asid, addr, size,
520                                 flags, pc, _cpuId, tid);
521
522    Addr split_addr = roundDown(addr + size - 1, block_size);
523    assert(split_addr <= addr || split_addr - addr < block_size);
524
525    _status = DTBWaitResponse;
526    if (split_addr > addr) {
527        RequestPtr req1, req2;
528        assert(!req->isLLSC() && !req->isSwap());
529        req->splitOnVaddr(split_addr, req1, req2);
530
531        WholeTranslationState *state =
532            new WholeTranslationState(req, req1, req2, newData, res, mode);
533        DataTranslation<TimingSimpleCPU> *trans1 =
534            new DataTranslation<TimingSimpleCPU>(this, state, 0);
535        DataTranslation<TimingSimpleCPU> *trans2 =
536            new DataTranslation<TimingSimpleCPU>(this, state, 1);
537
538        thread->dtb->translateTiming(req1, tc, trans1, mode);
539        thread->dtb->translateTiming(req2, tc, trans2, mode);
540    } else {
541        WholeTranslationState *state =
542            new WholeTranslationState(req, newData, res, mode);
543        DataTranslation<TimingSimpleCPU> *translation =
544            new DataTranslation<TimingSimpleCPU>(this, state);
545        thread->dtb->translateTiming(req, tc, translation, mode);
546    }
547
548    // Translation faults will be returned via finishTranslation()
549    return NoFault;
550}
551
552
553void
554TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
555{
556    _status = Running;
557
558    if (state->getFault() != NoFault) {
559        if (state->isPrefetch()) {
560            state->setNoFault();
561        }
562        delete [] state->data;
563        state->deleteReqs();
564        translationFault(state->getFault());
565    } else {
566        if (!state->isSplit) {
567            sendData(state->mainReq, state->data, state->res,
568                     state->mode == BaseTLB::Read);
569        } else {
570            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
571                          state->data, state->mode == BaseTLB::Read);
572        }
573    }
574
575    delete state;
576}
577
578
579void
580TimingSimpleCPU::fetch()
581{
582    DPRINTF(SimpleCPU, "Fetch\n");
583
584    if (!curStaticInst || !curStaticInst->isDelayedCommit())
585        checkForInterrupts();
586
587    checkPcEventQueue();
588
589    // We must have just got suspended by a PC event
590    if (_status == Idle)
591        return;
592
593    TheISA::PCState pcState = thread->pcState();
594    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
595
596    if (needToFetch) {
597        _status = Running;
598        Request *ifetch_req = new Request();
599        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
600        setupFetchRequest(ifetch_req);
601        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
602        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
603                BaseTLB::Execute);
604    } else {
605        _status = IcacheWaitResponse;
606        completeIfetch(NULL);
607
608        numCycles += tickToCycles(curTick() - previousTick);
609        previousTick = curTick();
610    }
611}
612
613
614void
615TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
616{
617    if (fault == NoFault) {
618        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
619                req->getVaddr(), req->getPaddr());
620        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
621        ifetch_pkt->dataStatic(&inst);
622        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
623
624        if (!icachePort.sendTiming(ifetch_pkt)) {
625            // Need to wait for retry
626            _status = IcacheRetry;
627        } else {
628            // Need to wait for cache to respond
629            _status = IcacheWaitResponse;
630            // ownership of packet transferred to memory system
631            ifetch_pkt = NULL;
632        }
633    } else {
634        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
635        delete req;
636        // fetch fault: advance directly to next instruction (fault handler)
637        _status = Running;
638        advanceInst(fault);
639    }
640
641    numCycles += tickToCycles(curTick() - previousTick);
642    previousTick = curTick();
643}
644
645
646void
647TimingSimpleCPU::advanceInst(Fault fault)
648{
649
650    if (_status == Faulting)
651        return;
652
653    if (fault != NoFault) {
654        advancePC(fault);
655        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
656        reschedule(fetchEvent, nextCycle(), true);
657        _status = Faulting;
658        return;
659    }
660
661
662    if (!stayAtPC)
663        advancePC(fault);
664
665    if (_status == Running) {
666        // kick off fetch of next instruction... callback from icache
667        // response will cause that instruction to be executed,
668        // keeping the CPU running.
669        fetch();
670    }
671}
672
673
674void
675TimingSimpleCPU::completeIfetch(PacketPtr pkt)
676{
677    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
678            pkt->getAddr() : 0);
679
680    // received a response from the icache: execute the received
681    // instruction
682
683    assert(!pkt || !pkt->isError());
684    assert(_status == IcacheWaitResponse);
685
686    _status = Running;
687
688    numCycles += tickToCycles(curTick() - previousTick);
689    previousTick = curTick();
690
691    if (getState() == SimObject::Draining) {
692        if (pkt) {
693            delete pkt->req;
694            delete pkt;
695        }
696
697        completeDrain();
698        return;
699    }
700
701    preExecute();
702    if (curStaticInst && curStaticInst->isMemRef()) {
703        // load or store: just send to dcache
704        Fault fault = curStaticInst->initiateAcc(this, traceData);
705
706        // If we're not running now the instruction will complete in a dcache
707        // response callback or the instruction faulted and has started an
708        // ifetch
709        if (_status == Running) {
710            if (fault != NoFault && traceData) {
711                // If there was a fault, we shouldn't trace this instruction.
712                delete traceData;
713                traceData = NULL;
714            }
715
716            postExecute();
717            // @todo remove me after debugging with legion done
718            if (curStaticInst && (!curStaticInst->isMicroop() ||
719                        curStaticInst->isFirstMicroop()))
720                instCnt++;
721            advanceInst(fault);
722        }
723    } else if (curStaticInst) {
724        // non-memory instruction: execute completely now
725        Fault fault = curStaticInst->execute(this, traceData);
726
727        // keep an instruction count
728        if (fault == NoFault)
729            countInst();
730        else if (traceData && !DTRACE(ExecFaulting)) {
731            delete traceData;
732            traceData = NULL;
733        }
734
735        postExecute();
736        // @todo remove me after debugging with legion done
737        if (curStaticInst && (!curStaticInst->isMicroop() ||
738                    curStaticInst->isFirstMicroop()))
739            instCnt++;
740        advanceInst(fault);
741    } else {
742        advanceInst(NoFault);
743    }
744
745    if (pkt) {
746        delete pkt->req;
747        delete pkt;
748    }
749}
750
751void
752TimingSimpleCPU::IcachePort::ITickEvent::process()
753{
754    cpu->completeIfetch(pkt);
755}
756
757bool
758TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
759{
760    if (pkt->isResponse() && !pkt->wasNacked()) {
761        DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
762        // delay processing of returned data until next CPU clock edge
763        Tick next_tick = cpu->nextCycle(curTick());
764
765        if (next_tick == curTick())
766            cpu->completeIfetch(pkt);
767        else
768            tickEvent.schedule(pkt, next_tick);
769
770        return true;
771    } else if (pkt->wasNacked()) {
772        assert(cpu->_status == IcacheWaitResponse);
773        pkt->reinitNacked();
774        if (!sendTiming(pkt)) {
775            cpu->_status = IcacheRetry;
776            cpu->ifetch_pkt = pkt;
777        }
778    }
779    //Snooping a Coherence Request, do nothing
780    return true;
781}
782
783void
784TimingSimpleCPU::IcachePort::recvRetry()
785{
786    // we shouldn't get a retry unless we have a packet that we're
787    // waiting to transmit
788    assert(cpu->ifetch_pkt != NULL);
789    assert(cpu->_status == IcacheRetry);
790    PacketPtr tmp = cpu->ifetch_pkt;
791    if (sendTiming(tmp)) {
792        cpu->_status = IcacheWaitResponse;
793        cpu->ifetch_pkt = NULL;
794    }
795}
796
797void
798TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
799{
800    // received a response from the dcache: complete the load or store
801    // instruction
802    assert(!pkt->isError());
803    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
804           pkt->req->getFlags().isSet(Request::NO_ACCESS));
805
806    numCycles += tickToCycles(curTick() - previousTick);
807    previousTick = curTick();
808
809    if (pkt->senderState) {
810        SplitFragmentSenderState * send_state =
811            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
812        assert(send_state);
813        delete pkt->req;
814        delete pkt;
815        PacketPtr big_pkt = send_state->bigPkt;
816        delete send_state;
817
818        SplitMainSenderState * main_send_state =
819            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
820        assert(main_send_state);
821        // Record the fact that this packet is no longer outstanding.
822        assert(main_send_state->outstanding != 0);
823        main_send_state->outstanding--;
824
825        if (main_send_state->outstanding) {
826            return;
827        } else {
828            delete main_send_state;
829            big_pkt->senderState = NULL;
830            pkt = big_pkt;
831        }
832    }
833
834    _status = Running;
835
836    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
837
838    // keep an instruction count
839    if (fault == NoFault)
840        countInst();
841    else if (traceData) {
842        // If there was a fault, we shouldn't trace this instruction.
843        delete traceData;
844        traceData = NULL;
845    }
846
847    // the locked flag may be cleared on the response packet, so check
848    // pkt->req and not pkt to see if it was a load-locked
849    if (pkt->isRead() && pkt->req->isLLSC()) {
850        TheISA::handleLockedRead(thread, pkt->req);
851    }
852
853    delete pkt->req;
854    delete pkt;
855
856    postExecute();
857
858    if (getState() == SimObject::Draining) {
859        advancePC(fault);
860        completeDrain();
861
862        return;
863    }
864
865    advanceInst(fault);
866}
867
868
869void
870TimingSimpleCPU::completeDrain()
871{
872    DPRINTF(Config, "Done draining\n");
873    changeState(SimObject::Drained);
874    drainEvent->process();
875}
876
877void
878TimingSimpleCPU::DcachePort::setPeer(Port *port)
879{
880    Port::setPeer(port);
881
882#if FULL_SYSTEM
883    // Update the ThreadContext's memory ports (Functional/Virtual
884    // Ports)
885    cpu->tcBase()->connectMemPorts(cpu->tcBase());
886#endif
887}
888
889bool
890TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
891{
892    if (pkt->isResponse() && !pkt->wasNacked()) {
893        // delay processing of returned data until next CPU clock edge
894        Tick next_tick = cpu->nextCycle(curTick());
895
896        if (next_tick == curTick()) {
897            cpu->completeDataAccess(pkt);
898        } else {
899            if (!tickEvent.scheduled()) {
900                tickEvent.schedule(pkt, next_tick);
901            } else {
902                // In the case of a split transaction and a cache that is
903                // faster than a CPU we could get two responses before
904                // next_tick expires
905                if (!retryEvent.scheduled())
906                    schedule(retryEvent, next_tick);
907                return false;
908            }
909        }
910
911        return true;
912    }
913    else if (pkt->wasNacked()) {
914        assert(cpu->_status == DcacheWaitResponse);
915        pkt->reinitNacked();
916        if (!sendTiming(pkt)) {
917            cpu->_status = DcacheRetry;
918            cpu->dcache_pkt = pkt;
919        }
920    }
921    //Snooping a Coherence Request, do nothing
922    return true;
923}
924
925void
926TimingSimpleCPU::DcachePort::DTickEvent::process()
927{
928    cpu->completeDataAccess(pkt);
929}
930
931void
932TimingSimpleCPU::DcachePort::recvRetry()
933{
934    // we shouldn't get a retry unless we have a packet that we're
935    // waiting to transmit
936    assert(cpu->dcache_pkt != NULL);
937    assert(cpu->_status == DcacheRetry);
938    PacketPtr tmp = cpu->dcache_pkt;
939    if (tmp->senderState) {
940        // This is a packet from a split access.
941        SplitFragmentSenderState * send_state =
942            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
943        assert(send_state);
944        PacketPtr big_pkt = send_state->bigPkt;
945
946        SplitMainSenderState * main_send_state =
947            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
948        assert(main_send_state);
949
950        if (sendTiming(tmp)) {
951            // If we were able to send without retrying, record that fact
952            // and try sending the other fragment.
953            send_state->clearFromParent();
954            int other_index = main_send_state->getPendingFragment();
955            if (other_index > 0) {
956                tmp = main_send_state->fragments[other_index];
957                cpu->dcache_pkt = tmp;
958                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
959                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
960                    main_send_state->fragments[other_index] = NULL;
961                }
962            } else {
963                cpu->_status = DcacheWaitResponse;
964                // memory system takes ownership of packet
965                cpu->dcache_pkt = NULL;
966            }
967        }
968    } else if (sendTiming(tmp)) {
969        cpu->_status = DcacheWaitResponse;
970        // memory system takes ownership of packet
971        cpu->dcache_pkt = NULL;
972    }
973}
974
975TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
976    Tick t)
977    : pkt(_pkt), cpu(_cpu)
978{
979    cpu->schedule(this, t);
980}
981
982void
983TimingSimpleCPU::IprEvent::process()
984{
985    cpu->completeDataAccess(pkt);
986}
987
988const char *
989TimingSimpleCPU::IprEvent::description() const
990{
991    return "Timing Simple CPU Delay IPR event";
992}
993
994
995void
996TimingSimpleCPU::printAddr(Addr a)
997{
998    dcachePort.printAddr(a);
999}
1000
1001
1002////////////////////////////////////////////////////////////////////////
1003//
1004//  TimingSimpleCPU Simulation Object
1005//
1006TimingSimpleCPU *
1007TimingSimpleCPUParams::create()
1008{
1009    numThreads = 1;
1010#if !FULL_SYSTEM
1011    if (workload.size() != 1)
1012        panic("only one workload allowed");
1013#endif
1014    return new TimingSimpleCPU(this);
1015}
1016