timing.cc revision 7516
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49    if (if_name == "dcache_port")
50        return &dcachePort;
51    else if (if_name == "icache_port")
52        return &icachePort;
53    else
54        panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60    BaseCPU::init();
61#if FULL_SYSTEM
62    for (int i = 0; i < threadContexts.size(); ++i) {
63        ThreadContext *tc = threadContexts[i];
64
65        // initialize CPU, including PC
66        TheISA::initCPU(tc, _cpuId);
67    }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75    return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81    //No internal storage to update, jusst return
82    return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88    if (status == RangeChange) {
89        if (!snoopRangeSent) {
90            snoopRangeSent = true;
91            sendStatusChange(Port::RangeChange);
92        }
93        return;
94    }
95
96    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103    pkt = _pkt;
104    cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109    dcachePort(this, p->clock), fetchEvent(this)
110{
111    _status = Idle;
112
113    icachePort.snoopRangeSent = false;
114    dcachePort.snoopRangeSent = false;
115
116    ifetch_pkt = dcache_pkt = NULL;
117    drainEvent = NULL;
118    previousTick = 0;
119    changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146    // TimingSimpleCPU is ready to drain if it's not waiting for
147    // an access to complete.
148    if (_status == Idle || _status == Running || _status == SwitchedOut) {
149        changeState(SimObject::Drained);
150        return 0;
151    } else {
152        changeState(SimObject::Draining);
153        drainEvent = drain_event;
154        return 1;
155    }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161    DPRINTF(SimpleCPU, "Resume\n");
162    if (_status != SwitchedOut && _status != Idle) {
163        assert(system->getMemoryMode() == Enums::timing);
164
165        if (fetchEvent.scheduled())
166           deschedule(fetchEvent);
167
168        schedule(fetchEvent, nextCycle());
169    }
170
171    changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177    assert(_status == Running || _status == Idle);
178    _status = SwitchedOut;
179    numCycles += tickToCycles(curTick - previousTick);
180
181    // If we've been scheduled to resume but are then told to switch out,
182    // we'll need to cancel it.
183    if (fetchEvent.scheduled())
184        deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193    // if any of this CPU's ThreadContexts are active, mark the CPU as
194    // running and schedule its tick event.
195    for (int i = 0; i < threadContexts.size(); ++i) {
196        ThreadContext *tc = threadContexts[i];
197        if (tc->status() == ThreadContext::Active && _status != Running) {
198            _status = Running;
199            break;
200        }
201    }
202
203    if (_status != Running) {
204        _status = Idle;
205    }
206    assert(threadContexts.size() == 1);
207    previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234    assert(thread_num == 0);
235    assert(thread);
236
237    if (_status == Idle)
238        return;
239
240    assert(_status == Running);
241
242    // just change status to Idle... if status != Running,
243    // completeInst() will not initiate fetch of next instruction.
244
245    notIdleFraction--;
246    _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252    RequestPtr req = pkt->req;
253    if (req->isMmapedIpr()) {
254        Tick delay;
255        delay = TheISA::handleIprRead(thread->getTC(), pkt);
256        new IprEvent(pkt, this, nextCycle(curTick + delay));
257        _status = DcacheWaitResponse;
258        dcache_pkt = NULL;
259    } else if (!dcachePort.sendTiming(pkt)) {
260        _status = DcacheRetry;
261        dcache_pkt = pkt;
262    } else {
263        _status = DcacheWaitResponse;
264        // memory system takes ownership of packet
265        dcache_pkt = NULL;
266    }
267    return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
272                          bool read)
273{
274    PacketPtr pkt;
275    buildPacket(pkt, req, read);
276    pkt->dataDynamic<uint8_t>(data);
277    if (req->getFlags().isSet(Request::NO_ACCESS)) {
278        assert(!dcache_pkt);
279        pkt->makeResponse();
280        completeDataAccess(pkt);
281    } else if (read) {
282        handleReadPacket(pkt);
283    } else {
284        bool do_access = true;  // flag to suppress cache access
285
286        if (req->isLLSC()) {
287            do_access = TheISA::handleLockedWrite(thread, req);
288        } else if (req->isCondSwap()) {
289            assert(res);
290            req->setExtraData(*res);
291        }
292
293        if (do_access) {
294            dcache_pkt = pkt;
295            handleWritePacket();
296        } else {
297            _status = DcacheWaitResponse;
298            completeDataAccess(pkt);
299        }
300    }
301}
302
303void
304TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
305                               RequestPtr req, uint8_t *data, bool read)
306{
307    PacketPtr pkt1, pkt2;
308    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
309    if (req->getFlags().isSet(Request::NO_ACCESS)) {
310        assert(!dcache_pkt);
311        pkt1->makeResponse();
312        completeDataAccess(pkt1);
313    } else if (read) {
314        if (handleReadPacket(pkt1)) {
315            SplitFragmentSenderState * send_state =
316                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317            send_state->clearFromParent();
318            if (handleReadPacket(pkt2)) {
319                send_state = dynamic_cast<SplitFragmentSenderState *>(
320                        pkt1->senderState);
321                send_state->clearFromParent();
322            }
323        }
324    } else {
325        dcache_pkt = pkt1;
326        if (handleWritePacket()) {
327            SplitFragmentSenderState * send_state =
328                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
329            send_state->clearFromParent();
330            dcache_pkt = pkt2;
331            if (handleWritePacket()) {
332                send_state = dynamic_cast<SplitFragmentSenderState *>(
333                        pkt1->senderState);
334                send_state->clearFromParent();
335            }
336        }
337    }
338}
339
340void
341TimingSimpleCPU::translationFault(Fault fault)
342{
343    // fault may be NoFault in cases where a fault is suppressed,
344    // for instance prefetches.
345    numCycles += tickToCycles(curTick - previousTick);
346    previousTick = curTick;
347
348    if (traceData) {
349        // Since there was a fault, we shouldn't trace this instruction.
350        delete traceData;
351        traceData = NULL;
352    }
353
354    postExecute();
355
356    if (getState() == SimObject::Draining) {
357        advancePC(fault);
358        completeDrain();
359    } else {
360        advanceInst(fault);
361    }
362}
363
364void
365TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
366{
367    MemCmd cmd;
368    if (read) {
369        cmd = MemCmd::ReadReq;
370        if (req->isLLSC())
371            cmd = MemCmd::LoadLockedReq;
372    } else {
373        cmd = MemCmd::WriteReq;
374        if (req->isLLSC()) {
375            cmd = MemCmd::StoreCondReq;
376        } else if (req->isSwap()) {
377            cmd = MemCmd::SwapReq;
378        }
379    }
380    pkt = new Packet(req, cmd, Packet::Broadcast);
381}
382
383void
384TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
385        RequestPtr req1, RequestPtr req2, RequestPtr req,
386        uint8_t *data, bool read)
387{
388    pkt1 = pkt2 = NULL;
389
390    assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
391
392    if (req->getFlags().isSet(Request::NO_ACCESS)) {
393        buildPacket(pkt1, req, read);
394        return;
395    }
396
397    buildPacket(pkt1, req1, read);
398    buildPacket(pkt2, req2, read);
399
400    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
401    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
402                               Packet::Broadcast);
403
404    pkt->dataDynamic<uint8_t>(data);
405    pkt1->dataStatic<uint8_t>(data);
406    pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408    SplitMainSenderState * main_send_state = new SplitMainSenderState;
409    pkt->senderState = main_send_state;
410    main_send_state->fragments[0] = pkt1;
411    main_send_state->fragments[1] = pkt2;
412    main_send_state->outstanding = 2;
413    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417template <class T>
418Fault
419TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421    Fault fault;
422    const int asid = 0;
423    const ThreadID tid = 0;
424    const Addr pc = thread->readPC();
425    unsigned block_size = dcachePort.peerBlockSize();
426    int data_size = sizeof(T);
427    BaseTLB::Mode mode = BaseTLB::Read;
428
429    if (traceData) {
430        traceData->setAddr(addr);
431    }
432
433    RequestPtr req  = new Request(asid, addr, data_size,
434                                  flags, pc, _cpuId, tid);
435
436    Addr split_addr = roundDown(addr + data_size - 1, block_size);
437    assert(split_addr <= addr || split_addr - addr < block_size);
438
439    _status = DTBWaitResponse;
440    if (split_addr > addr) {
441        RequestPtr req1, req2;
442        assert(!req->isLLSC() && !req->isSwap());
443        req->splitOnVaddr(split_addr, req1, req2);
444
445        WholeTranslationState *state =
446            new WholeTranslationState(req, req1, req2, (uint8_t *)(new T),
447                                      NULL, mode);
448        DataTranslation<TimingSimpleCPU> *trans1 =
449            new DataTranslation<TimingSimpleCPU>(this, state, 0);
450        DataTranslation<TimingSimpleCPU> *trans2 =
451            new DataTranslation<TimingSimpleCPU>(this, state, 1);
452
453        thread->dtb->translateTiming(req1, tc, trans1, mode);
454        thread->dtb->translateTiming(req2, tc, trans2, mode);
455    } else {
456        WholeTranslationState *state =
457            new WholeTranslationState(req, (uint8_t *)(new T), NULL, mode);
458        DataTranslation<TimingSimpleCPU> *translation
459            = new DataTranslation<TimingSimpleCPU>(this, state);
460        thread->dtb->translateTiming(req, tc, translation, mode);
461    }
462
463    return NoFault;
464}
465
466#ifndef DOXYGEN_SHOULD_SKIP_THIS
467
468template
469Fault
470TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
471
472template
473Fault
474TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
475
476template
477Fault
478TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
479
480template
481Fault
482TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
483
484template
485Fault
486TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
487
488template
489Fault
490TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
491
492#endif //DOXYGEN_SHOULD_SKIP_THIS
493
494template<>
495Fault
496TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
497{
498    return read(addr, *(uint64_t*)&data, flags);
499}
500
501template<>
502Fault
503TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
504{
505    return read(addr, *(uint32_t*)&data, flags);
506}
507
508template<>
509Fault
510TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
511{
512    return read(addr, (uint32_t&)data, flags);
513}
514
515bool
516TimingSimpleCPU::handleWritePacket()
517{
518    RequestPtr req = dcache_pkt->req;
519    if (req->isMmapedIpr()) {
520        Tick delay;
521        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
522        new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
523        _status = DcacheWaitResponse;
524        dcache_pkt = NULL;
525    } else if (!dcachePort.sendTiming(dcache_pkt)) {
526        _status = DcacheRetry;
527    } else {
528        _status = DcacheWaitResponse;
529        // memory system takes ownership of packet
530        dcache_pkt = NULL;
531    }
532    return dcache_pkt == NULL;
533}
534
535template <class T>
536Fault
537TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
538{
539    const int asid = 0;
540    const ThreadID tid = 0;
541    const Addr pc = thread->readPC();
542    unsigned block_size = dcachePort.peerBlockSize();
543    int data_size = sizeof(T);
544    BaseTLB::Mode mode = BaseTLB::Write;
545
546    if (traceData) {
547        traceData->setAddr(addr);
548        traceData->setData(data);
549    }
550
551    RequestPtr req = new Request(asid, addr, data_size,
552                                 flags, pc, _cpuId, tid);
553
554    Addr split_addr = roundDown(addr + data_size - 1, block_size);
555    assert(split_addr <= addr || split_addr - addr < block_size);
556
557    T *dataP = new T;
558    *dataP = TheISA::htog(data);
559    _status = DTBWaitResponse;
560    if (split_addr > addr) {
561        RequestPtr req1, req2;
562        assert(!req->isLLSC() && !req->isSwap());
563        req->splitOnVaddr(split_addr, req1, req2);
564
565        WholeTranslationState *state =
566            new WholeTranslationState(req, req1, req2, (uint8_t *)dataP,
567                                      res, mode);
568        DataTranslation<TimingSimpleCPU> *trans1 =
569            new DataTranslation<TimingSimpleCPU>(this, state, 0);
570        DataTranslation<TimingSimpleCPU> *trans2 =
571            new DataTranslation<TimingSimpleCPU>(this, state, 1);
572
573        thread->dtb->translateTiming(req1, tc, trans1, mode);
574        thread->dtb->translateTiming(req2, tc, trans2, mode);
575    } else {
576        WholeTranslationState *state =
577            new WholeTranslationState(req, (uint8_t *)dataP, res, mode);
578        DataTranslation<TimingSimpleCPU> *translation =
579            new DataTranslation<TimingSimpleCPU>(this, state);
580        thread->dtb->translateTiming(req, tc, translation, mode);
581    }
582
583    // Translation faults will be returned via finishTranslation()
584    return NoFault;
585}
586
587
588#ifndef DOXYGEN_SHOULD_SKIP_THIS
589template
590Fault
591TimingSimpleCPU::write(Twin32_t data, Addr addr,
592                       unsigned flags, uint64_t *res);
593
594template
595Fault
596TimingSimpleCPU::write(Twin64_t data, Addr addr,
597                       unsigned flags, uint64_t *res);
598
599template
600Fault
601TimingSimpleCPU::write(uint64_t data, Addr addr,
602                       unsigned flags, uint64_t *res);
603
604template
605Fault
606TimingSimpleCPU::write(uint32_t data, Addr addr,
607                       unsigned flags, uint64_t *res);
608
609template
610Fault
611TimingSimpleCPU::write(uint16_t data, Addr addr,
612                       unsigned flags, uint64_t *res);
613
614template
615Fault
616TimingSimpleCPU::write(uint8_t data, Addr addr,
617                       unsigned flags, uint64_t *res);
618
619#endif //DOXYGEN_SHOULD_SKIP_THIS
620
621template<>
622Fault
623TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
624{
625    return write(*(uint64_t*)&data, addr, flags, res);
626}
627
628template<>
629Fault
630TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
631{
632    return write(*(uint32_t*)&data, addr, flags, res);
633}
634
635
636template<>
637Fault
638TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
639{
640    return write((uint32_t)data, addr, flags, res);
641}
642
643
644void
645TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
646{
647    _status = Running;
648
649    if (state->getFault() != NoFault) {
650        if (state->isPrefetch()) {
651            state->setNoFault();
652        }
653        delete state->data;
654        state->deleteReqs();
655        translationFault(state->getFault());
656    } else {
657        if (!state->isSplit) {
658            sendData(state->mainReq, state->data, state->res,
659                     state->mode == BaseTLB::Read);
660        } else {
661            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
662                          state->data, state->mode == BaseTLB::Read);
663        }
664    }
665
666    delete state;
667}
668
669
670void
671TimingSimpleCPU::fetch()
672{
673    DPRINTF(SimpleCPU, "Fetch\n");
674
675    if (!curStaticInst || !curStaticInst->isDelayedCommit())
676        checkForInterrupts();
677
678    checkPcEventQueue();
679
680    bool fromRom = isRomMicroPC(thread->readMicroPC());
681
682    if (!fromRom && !curMacroStaticInst) {
683        Request *ifetch_req = new Request();
684        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
685        setupFetchRequest(ifetch_req);
686        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
687                BaseTLB::Execute);
688    } else {
689        _status = IcacheWaitResponse;
690        completeIfetch(NULL);
691
692        numCycles += tickToCycles(curTick - previousTick);
693        previousTick = curTick;
694    }
695}
696
697
698void
699TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
700{
701    if (fault == NoFault) {
702        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
703        ifetch_pkt->dataStatic(&inst);
704
705        if (!icachePort.sendTiming(ifetch_pkt)) {
706            // Need to wait for retry
707            _status = IcacheRetry;
708        } else {
709            // Need to wait for cache to respond
710            _status = IcacheWaitResponse;
711            // ownership of packet transferred to memory system
712            ifetch_pkt = NULL;
713        }
714    } else {
715        delete req;
716        // fetch fault: advance directly to next instruction (fault handler)
717        advanceInst(fault);
718    }
719
720    numCycles += tickToCycles(curTick - previousTick);
721    previousTick = curTick;
722}
723
724
725void
726TimingSimpleCPU::advanceInst(Fault fault)
727{
728    if (fault != NoFault || !stayAtPC)
729        advancePC(fault);
730
731    if (_status == Running) {
732        // kick off fetch of next instruction... callback from icache
733        // response will cause that instruction to be executed,
734        // keeping the CPU running.
735        fetch();
736    }
737}
738
739
740void
741TimingSimpleCPU::completeIfetch(PacketPtr pkt)
742{
743    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
744
745    // received a response from the icache: execute the received
746    // instruction
747
748    assert(!pkt || !pkt->isError());
749    assert(_status == IcacheWaitResponse);
750
751    _status = Running;
752
753    numCycles += tickToCycles(curTick - previousTick);
754    previousTick = curTick;
755
756    if (getState() == SimObject::Draining) {
757        if (pkt) {
758            delete pkt->req;
759            delete pkt;
760        }
761
762        completeDrain();
763        return;
764    }
765
766    preExecute();
767    if (curStaticInst &&
768            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
769        // load or store: just send to dcache
770        Fault fault = curStaticInst->initiateAcc(this, traceData);
771        if (_status != Running) {
772            // instruction will complete in dcache response callback
773            assert(_status == DcacheWaitResponse ||
774                    _status == DcacheRetry || DTBWaitResponse);
775            assert(fault == NoFault);
776        } else {
777            if (fault != NoFault && traceData) {
778                // If there was a fault, we shouldn't trace this instruction.
779                delete traceData;
780                traceData = NULL;
781            }
782
783            postExecute();
784            // @todo remove me after debugging with legion done
785            if (curStaticInst && (!curStaticInst->isMicroop() ||
786                        curStaticInst->isFirstMicroop()))
787                instCnt++;
788            advanceInst(fault);
789        }
790    } else if (curStaticInst) {
791        // non-memory instruction: execute completely now
792        Fault fault = curStaticInst->execute(this, traceData);
793
794        // keep an instruction count
795        if (fault == NoFault)
796            countInst();
797        else if (traceData) {
798            // If there was a fault, we shouldn't trace this instruction.
799            delete traceData;
800            traceData = NULL;
801        }
802
803        postExecute();
804        // @todo remove me after debugging with legion done
805        if (curStaticInst && (!curStaticInst->isMicroop() ||
806                    curStaticInst->isFirstMicroop()))
807            instCnt++;
808        advanceInst(fault);
809    } else {
810        advanceInst(NoFault);
811    }
812
813    if (pkt) {
814        delete pkt->req;
815        delete pkt;
816    }
817}
818
819void
820TimingSimpleCPU::IcachePort::ITickEvent::process()
821{
822    cpu->completeIfetch(pkt);
823}
824
825bool
826TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
827{
828    if (pkt->isResponse() && !pkt->wasNacked()) {
829        // delay processing of returned data until next CPU clock edge
830        Tick next_tick = cpu->nextCycle(curTick);
831
832        if (next_tick == curTick)
833            cpu->completeIfetch(pkt);
834        else
835            tickEvent.schedule(pkt, next_tick);
836
837        return true;
838    }
839    else if (pkt->wasNacked()) {
840        assert(cpu->_status == IcacheWaitResponse);
841        pkt->reinitNacked();
842        if (!sendTiming(pkt)) {
843            cpu->_status = IcacheRetry;
844            cpu->ifetch_pkt = pkt;
845        }
846    }
847    //Snooping a Coherence Request, do nothing
848    return true;
849}
850
851void
852TimingSimpleCPU::IcachePort::recvRetry()
853{
854    // we shouldn't get a retry unless we have a packet that we're
855    // waiting to transmit
856    assert(cpu->ifetch_pkt != NULL);
857    assert(cpu->_status == IcacheRetry);
858    PacketPtr tmp = cpu->ifetch_pkt;
859    if (sendTiming(tmp)) {
860        cpu->_status = IcacheWaitResponse;
861        cpu->ifetch_pkt = NULL;
862    }
863}
864
865void
866TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
867{
868    // received a response from the dcache: complete the load or store
869    // instruction
870    assert(!pkt->isError());
871    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
872           pkt->req->getFlags().isSet(Request::NO_ACCESS));
873
874    numCycles += tickToCycles(curTick - previousTick);
875    previousTick = curTick;
876
877    if (pkt->senderState) {
878        SplitFragmentSenderState * send_state =
879            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
880        assert(send_state);
881        delete pkt->req;
882        delete pkt;
883        PacketPtr big_pkt = send_state->bigPkt;
884        delete send_state;
885
886        SplitMainSenderState * main_send_state =
887            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
888        assert(main_send_state);
889        // Record the fact that this packet is no longer outstanding.
890        assert(main_send_state->outstanding != 0);
891        main_send_state->outstanding--;
892
893        if (main_send_state->outstanding) {
894            return;
895        } else {
896            delete main_send_state;
897            big_pkt->senderState = NULL;
898            pkt = big_pkt;
899        }
900    }
901
902    _status = Running;
903
904    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
905
906    // keep an instruction count
907    if (fault == NoFault)
908        countInst();
909    else if (traceData) {
910        // If there was a fault, we shouldn't trace this instruction.
911        delete traceData;
912        traceData = NULL;
913    }
914
915    // the locked flag may be cleared on the response packet, so check
916    // pkt->req and not pkt to see if it was a load-locked
917    if (pkt->isRead() && pkt->req->isLLSC()) {
918        TheISA::handleLockedRead(thread, pkt->req);
919    }
920
921    delete pkt->req;
922    delete pkt;
923
924    postExecute();
925
926    if (getState() == SimObject::Draining) {
927        advancePC(fault);
928        completeDrain();
929
930        return;
931    }
932
933    advanceInst(fault);
934}
935
936
937void
938TimingSimpleCPU::completeDrain()
939{
940    DPRINTF(Config, "Done draining\n");
941    changeState(SimObject::Drained);
942    drainEvent->process();
943}
944
945void
946TimingSimpleCPU::DcachePort::setPeer(Port *port)
947{
948    Port::setPeer(port);
949
950#if FULL_SYSTEM
951    // Update the ThreadContext's memory ports (Functional/Virtual
952    // Ports)
953    cpu->tcBase()->connectMemPorts(cpu->tcBase());
954#endif
955}
956
957bool
958TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
959{
960    if (pkt->isResponse() && !pkt->wasNacked()) {
961        // delay processing of returned data until next CPU clock edge
962        Tick next_tick = cpu->nextCycle(curTick);
963
964        if (next_tick == curTick) {
965            cpu->completeDataAccess(pkt);
966        } else {
967            tickEvent.schedule(pkt, next_tick);
968        }
969
970        return true;
971    }
972    else if (pkt->wasNacked()) {
973        assert(cpu->_status == DcacheWaitResponse);
974        pkt->reinitNacked();
975        if (!sendTiming(pkt)) {
976            cpu->_status = DcacheRetry;
977            cpu->dcache_pkt = pkt;
978        }
979    }
980    //Snooping a Coherence Request, do nothing
981    return true;
982}
983
984void
985TimingSimpleCPU::DcachePort::DTickEvent::process()
986{
987    cpu->completeDataAccess(pkt);
988}
989
990void
991TimingSimpleCPU::DcachePort::recvRetry()
992{
993    // we shouldn't get a retry unless we have a packet that we're
994    // waiting to transmit
995    assert(cpu->dcache_pkt != NULL);
996    assert(cpu->_status == DcacheRetry);
997    PacketPtr tmp = cpu->dcache_pkt;
998    if (tmp->senderState) {
999        // This is a packet from a split access.
1000        SplitFragmentSenderState * send_state =
1001            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1002        assert(send_state);
1003        PacketPtr big_pkt = send_state->bigPkt;
1004
1005        SplitMainSenderState * main_send_state =
1006            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1007        assert(main_send_state);
1008
1009        if (sendTiming(tmp)) {
1010            // If we were able to send without retrying, record that fact
1011            // and try sending the other fragment.
1012            send_state->clearFromParent();
1013            int other_index = main_send_state->getPendingFragment();
1014            if (other_index > 0) {
1015                tmp = main_send_state->fragments[other_index];
1016                cpu->dcache_pkt = tmp;
1017                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1018                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
1019                    main_send_state->fragments[other_index] = NULL;
1020                }
1021            } else {
1022                cpu->_status = DcacheWaitResponse;
1023                // memory system takes ownership of packet
1024                cpu->dcache_pkt = NULL;
1025            }
1026        }
1027    } else if (sendTiming(tmp)) {
1028        cpu->_status = DcacheWaitResponse;
1029        // memory system takes ownership of packet
1030        cpu->dcache_pkt = NULL;
1031    }
1032}
1033
1034TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1035    Tick t)
1036    : pkt(_pkt), cpu(_cpu)
1037{
1038    cpu->schedule(this, t);
1039}
1040
1041void
1042TimingSimpleCPU::IprEvent::process()
1043{
1044    cpu->completeDataAccess(pkt);
1045}
1046
1047const char *
1048TimingSimpleCPU::IprEvent::description() const
1049{
1050    return "Timing Simple CPU Delay IPR event";
1051}
1052
1053
1054void
1055TimingSimpleCPU::printAddr(Addr a)
1056{
1057    dcachePort.printAddr(a);
1058}
1059
1060
1061////////////////////////////////////////////////////////////////////////
1062//
1063//  TimingSimpleCPU Simulation Object
1064//
1065TimingSimpleCPU *
1066TimingSimpleCPUParams::create()
1067{
1068    numThreads = 1;
1069#if !FULL_SYSTEM
1070    if (workload.size() != 1)
1071        panic("only one workload allowed");
1072#endif
1073    return new TimingSimpleCPU(this);
1074}
1075