timing.cc revision 7016:8b2b8e5e7d35
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/timing.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/TimingSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46Port *
47TimingSimpleCPU::getPort(const std::string &if_name, int idx)
48{
49    if (if_name == "dcache_port")
50        return &dcachePort;
51    else if (if_name == "icache_port")
52        return &icachePort;
53    else
54        panic("No Such Port\n");
55}
56
57void
58TimingSimpleCPU::init()
59{
60    BaseCPU::init();
61#if FULL_SYSTEM
62    for (int i = 0; i < threadContexts.size(); ++i) {
63        ThreadContext *tc = threadContexts[i];
64
65        // initialize CPU, including PC
66        TheISA::initCPU(tc, _cpuId);
67    }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75    return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81    //No internal storage to update, jusst return
82    return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88    if (status == RangeChange) {
89        if (!snoopRangeSent) {
90            snoopRangeSent = true;
91            sendStatusChange(Port::RangeChange);
92        }
93        return;
94    }
95
96    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103    pkt = _pkt;
104    cpu->schedule(this, t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
108    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this, p->clock),
109    dcachePort(this, p->clock), fetchEvent(this)
110{
111    _status = Idle;
112
113    icachePort.snoopRangeSent = false;
114    dcachePort.snoopRangeSent = false;
115
116    ifetch_pkt = dcache_pkt = NULL;
117    drainEvent = NULL;
118    previousTick = 0;
119    changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146    // TimingSimpleCPU is ready to drain if it's not waiting for
147    // an access to complete.
148    if (_status == Idle || _status == Running || _status == SwitchedOut) {
149        changeState(SimObject::Drained);
150        return 0;
151    } else {
152        changeState(SimObject::Draining);
153        drainEvent = drain_event;
154        return 1;
155    }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161    DPRINTF(SimpleCPU, "Resume\n");
162    if (_status != SwitchedOut && _status != Idle) {
163        assert(system->getMemoryMode() == Enums::timing);
164
165        if (fetchEvent.scheduled())
166           deschedule(fetchEvent);
167
168        schedule(fetchEvent, nextCycle());
169    }
170
171    changeState(SimObject::Running);
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177    assert(_status == Running || _status == Idle);
178    _status = SwitchedOut;
179    numCycles += tickToCycles(curTick - previousTick);
180
181    // If we've been scheduled to resume but are then told to switch out,
182    // we'll need to cancel it.
183    if (fetchEvent.scheduled())
184        deschedule(fetchEvent);
185}
186
187
188void
189TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
190{
191    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
192
193    // if any of this CPU's ThreadContexts are active, mark the CPU as
194    // running and schedule its tick event.
195    for (int i = 0; i < threadContexts.size(); ++i) {
196        ThreadContext *tc = threadContexts[i];
197        if (tc->status() == ThreadContext::Active && _status != Running) {
198            _status = Running;
199            break;
200        }
201    }
202
203    if (_status != Running) {
204        _status = Idle;
205    }
206    assert(threadContexts.size() == 1);
207    previousTick = curTick;
208}
209
210
211void
212TimingSimpleCPU::activateContext(int thread_num, int delay)
213{
214    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
215
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
233
234    assert(thread_num == 0);
235    assert(thread);
236
237    if (_status == Idle)
238        return;
239
240    assert(_status == Running);
241
242    // just change status to Idle... if status != Running,
243    // completeInst() will not initiate fetch of next instruction.
244
245    notIdleFraction--;
246    _status = Idle;
247}
248
249bool
250TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
251{
252    RequestPtr req = pkt->req;
253    if (req->isMmapedIpr()) {
254        Tick delay;
255        delay = TheISA::handleIprRead(thread->getTC(), pkt);
256        new IprEvent(pkt, this, nextCycle(curTick + delay));
257        _status = DcacheWaitResponse;
258        dcache_pkt = NULL;
259    } else if (!dcachePort.sendTiming(pkt)) {
260        _status = DcacheRetry;
261        dcache_pkt = pkt;
262    } else {
263        _status = DcacheWaitResponse;
264        // memory system takes ownership of packet
265        dcache_pkt = NULL;
266    }
267    return dcache_pkt == NULL;
268}
269
270void
271TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
272                          bool read)
273{
274    PacketPtr pkt;
275    buildPacket(pkt, req, read);
276    pkt->dataDynamic<uint8_t>(data);
277    if (req->getFlags().isSet(Request::NO_ACCESS)) {
278        assert(!dcache_pkt);
279        pkt->makeResponse();
280        completeDataAccess(pkt);
281    } else if (read) {
282        handleReadPacket(pkt);
283    } else {
284        bool do_access = true;  // flag to suppress cache access
285
286        if (req->isLLSC()) {
287            do_access = TheISA::handleLockedWrite(thread, req);
288        } else if (req->isCondSwap()) {
289            assert(res);
290            req->setExtraData(*res);
291        }
292
293        if (do_access) {
294            dcache_pkt = pkt;
295            handleWritePacket();
296        } else {
297            _status = DcacheWaitResponse;
298            completeDataAccess(pkt);
299        }
300    }
301}
302
303void
304TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
305                               RequestPtr req, uint8_t *data, bool read)
306{
307    PacketPtr pkt1, pkt2;
308    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
309    if (req->getFlags().isSet(Request::NO_ACCESS)) {
310        assert(!dcache_pkt);
311        pkt1->makeResponse();
312        completeDataAccess(pkt1);
313    } else if (read) {
314        if (handleReadPacket(pkt1)) {
315            SplitFragmentSenderState * send_state =
316                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317            send_state->clearFromParent();
318            if (handleReadPacket(pkt2)) {
319                send_state = dynamic_cast<SplitFragmentSenderState *>(
320                        pkt1->senderState);
321                send_state->clearFromParent();
322            }
323        }
324    } else {
325        dcache_pkt = pkt1;
326        if (handleWritePacket()) {
327            SplitFragmentSenderState * send_state =
328                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
329            send_state->clearFromParent();
330            dcache_pkt = pkt2;
331            if (handleWritePacket()) {
332                send_state = dynamic_cast<SplitFragmentSenderState *>(
333                        pkt1->senderState);
334                send_state->clearFromParent();
335            }
336        }
337    }
338}
339
340void
341TimingSimpleCPU::translationFault(Fault fault)
342{
343    // fault may be NoFault in cases where a fault is suppressed,
344    // for instance prefetches.
345    numCycles += tickToCycles(curTick - previousTick);
346    previousTick = curTick;
347
348    if (traceData) {
349        // Since there was a fault, we shouldn't trace this instruction.
350        delete traceData;
351        traceData = NULL;
352    }
353
354    postExecute();
355
356    if (getState() == SimObject::Draining) {
357        advancePC(fault);
358        completeDrain();
359    } else {
360        advanceInst(fault);
361    }
362}
363
364void
365TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
366{
367    MemCmd cmd;
368    if (read) {
369        cmd = MemCmd::ReadReq;
370        if (req->isLLSC())
371            cmd = MemCmd::LoadLockedReq;
372    } else {
373        cmd = MemCmd::WriteReq;
374        if (req->isLLSC()) {
375            cmd = MemCmd::StoreCondReq;
376        } else if (req->isSwap()) {
377            cmd = MemCmd::SwapReq;
378        }
379    }
380    pkt = new Packet(req, cmd, Packet::Broadcast);
381}
382
383void
384TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
385        RequestPtr req1, RequestPtr req2, RequestPtr req,
386        uint8_t *data, bool read)
387{
388    pkt1 = pkt2 = NULL;
389
390    assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
391
392    if (req->getFlags().isSet(Request::NO_ACCESS)) {
393        buildPacket(pkt1, req, read);
394        return;
395    }
396
397    buildPacket(pkt1, req1, read);
398    buildPacket(pkt2, req2, read);
399
400    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
401    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
402                               Packet::Broadcast);
403
404    pkt->dataDynamic<uint8_t>(data);
405    pkt1->dataStatic<uint8_t>(data);
406    pkt2->dataStatic<uint8_t>(data + req1->getSize());
407
408    SplitMainSenderState * main_send_state = new SplitMainSenderState;
409    pkt->senderState = main_send_state;
410    main_send_state->fragments[0] = pkt1;
411    main_send_state->fragments[1] = pkt2;
412    main_send_state->outstanding = 2;
413    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
414    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
415}
416
417template <class T>
418Fault
419TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421    Fault fault;
422    const int asid = 0;
423    const ThreadID tid = 0;
424    const Addr pc = thread->readPC();
425    unsigned block_size = dcachePort.peerBlockSize();
426    int data_size = sizeof(T);
427    BaseTLB::Mode mode = BaseTLB::Read;
428
429    RequestPtr req  = new Request(asid, addr, data_size,
430                                  flags, pc, _cpuId, tid);
431
432    Addr split_addr = roundDown(addr + data_size - 1, block_size);
433    assert(split_addr <= addr || split_addr - addr < block_size);
434
435    // This will need a new way to tell if it's hooked up to a cache or not.
436    if (req->isUncacheable())
437        recordEvent("Uncached Write");
438
439    _status = DTBWaitResponse;
440    if (split_addr > addr) {
441        RequestPtr req1, req2;
442        assert(!req->isLLSC() && !req->isSwap());
443        req->splitOnVaddr(split_addr, req1, req2);
444
445        WholeTranslationState *state =
446            new WholeTranslationState(req, req1, req2, (uint8_t *)(new T),
447                                      NULL, mode);
448        DataTranslation<TimingSimpleCPU> *trans1 =
449            new DataTranslation<TimingSimpleCPU>(this, state, 0);
450        DataTranslation<TimingSimpleCPU> *trans2 =
451            new DataTranslation<TimingSimpleCPU>(this, state, 1);
452
453        thread->dtb->translateTiming(req1, tc, trans1, mode);
454        thread->dtb->translateTiming(req2, tc, trans2, mode);
455    } else {
456        WholeTranslationState *state =
457            new WholeTranslationState(req, (uint8_t *)(new T), NULL, mode);
458        DataTranslation<TimingSimpleCPU> *translation
459            = new DataTranslation<TimingSimpleCPU>(this, state);
460        thread->dtb->translateTiming(req, tc, translation, mode);
461    }
462
463    if (traceData) {
464        traceData->setData(data);
465        traceData->setAddr(addr);
466    }
467
468    return NoFault;
469}
470
471#ifndef DOXYGEN_SHOULD_SKIP_THIS
472
473template
474Fault
475TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
476
477template
478Fault
479TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
480
481template
482Fault
483TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
484
485template
486Fault
487TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
488
489template
490Fault
491TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
492
493template
494Fault
495TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
496
497#endif //DOXYGEN_SHOULD_SKIP_THIS
498
499template<>
500Fault
501TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
502{
503    return read(addr, *(uint64_t*)&data, flags);
504}
505
506template<>
507Fault
508TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
509{
510    return read(addr, *(uint32_t*)&data, flags);
511}
512
513template<>
514Fault
515TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
516{
517    return read(addr, (uint32_t&)data, flags);
518}
519
520bool
521TimingSimpleCPU::handleWritePacket()
522{
523    RequestPtr req = dcache_pkt->req;
524    if (req->isMmapedIpr()) {
525        Tick delay;
526        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
527        new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
528        _status = DcacheWaitResponse;
529        dcache_pkt = NULL;
530    } else if (!dcachePort.sendTiming(dcache_pkt)) {
531        _status = DcacheRetry;
532    } else {
533        _status = DcacheWaitResponse;
534        // memory system takes ownership of packet
535        dcache_pkt = NULL;
536    }
537    return dcache_pkt == NULL;
538}
539
540template <class T>
541Fault
542TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
543{
544    const int asid = 0;
545    const ThreadID tid = 0;
546    const Addr pc = thread->readPC();
547    unsigned block_size = dcachePort.peerBlockSize();
548    int data_size = sizeof(T);
549    BaseTLB::Mode mode = BaseTLB::Write;
550
551    RequestPtr req = new Request(asid, addr, data_size,
552                                 flags, pc, _cpuId, tid);
553
554    Addr split_addr = roundDown(addr + data_size - 1, block_size);
555    assert(split_addr <= addr || split_addr - addr < block_size);
556
557    // This will need a new way to tell if it's hooked up to a cache or not.
558    if (req->isUncacheable())
559        recordEvent("Uncached Write");
560
561    T *dataP = new T;
562    *dataP = TheISA::htog(data);
563    _status = DTBWaitResponse;
564    if (split_addr > addr) {
565        RequestPtr req1, req2;
566        assert(!req->isLLSC() && !req->isSwap());
567        req->splitOnVaddr(split_addr, req1, req2);
568
569        WholeTranslationState *state =
570            new WholeTranslationState(req, req1, req2, (uint8_t *)dataP,
571                                      res, mode);
572        DataTranslation<TimingSimpleCPU> *trans1 =
573            new DataTranslation<TimingSimpleCPU>(this, state, 0);
574        DataTranslation<TimingSimpleCPU> *trans2 =
575            new DataTranslation<TimingSimpleCPU>(this, state, 1);
576
577        thread->dtb->translateTiming(req1, tc, trans1, mode);
578        thread->dtb->translateTiming(req2, tc, trans2, mode);
579    } else {
580        WholeTranslationState *state =
581            new WholeTranslationState(req, (uint8_t *)dataP, res, mode);
582        DataTranslation<TimingSimpleCPU> *translation =
583            new DataTranslation<TimingSimpleCPU>(this, state);
584        thread->dtb->translateTiming(req, tc, translation, mode);
585    }
586
587    if (traceData) {
588        traceData->setAddr(req->getVaddr());
589        traceData->setData(data);
590    }
591
592    // If the write needs to have a fault on the access, consider calling
593    // changeStatus() and changing it to "bad addr write" or something.
594    return NoFault;
595}
596
597
598#ifndef DOXYGEN_SHOULD_SKIP_THIS
599template
600Fault
601TimingSimpleCPU::write(Twin32_t data, Addr addr,
602                       unsigned flags, uint64_t *res);
603
604template
605Fault
606TimingSimpleCPU::write(Twin64_t data, Addr addr,
607                       unsigned flags, uint64_t *res);
608
609template
610Fault
611TimingSimpleCPU::write(uint64_t data, Addr addr,
612                       unsigned flags, uint64_t *res);
613
614template
615Fault
616TimingSimpleCPU::write(uint32_t data, Addr addr,
617                       unsigned flags, uint64_t *res);
618
619template
620Fault
621TimingSimpleCPU::write(uint16_t data, Addr addr,
622                       unsigned flags, uint64_t *res);
623
624template
625Fault
626TimingSimpleCPU::write(uint8_t data, Addr addr,
627                       unsigned flags, uint64_t *res);
628
629#endif //DOXYGEN_SHOULD_SKIP_THIS
630
631template<>
632Fault
633TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
634{
635    return write(*(uint64_t*)&data, addr, flags, res);
636}
637
638template<>
639Fault
640TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
641{
642    return write(*(uint32_t*)&data, addr, flags, res);
643}
644
645
646template<>
647Fault
648TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
649{
650    return write((uint32_t)data, addr, flags, res);
651}
652
653
654void
655TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
656{
657    _status = Running;
658
659    if (state->getFault() != NoFault) {
660        if (state->isPrefetch()) {
661            state->setNoFault();
662        }
663        delete state->data;
664        state->deleteReqs();
665        translationFault(state->getFault());
666    } else {
667        if (!state->isSplit) {
668            sendData(state->mainReq, state->data, state->res,
669                     state->mode == BaseTLB::Read);
670        } else {
671            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
672                          state->data, state->mode == BaseTLB::Read);
673        }
674    }
675
676    delete state;
677}
678
679
680void
681TimingSimpleCPU::fetch()
682{
683    DPRINTF(SimpleCPU, "Fetch\n");
684
685    if (!curStaticInst || !curStaticInst->isDelayedCommit())
686        checkForInterrupts();
687
688    checkPcEventQueue();
689
690    bool fromRom = isRomMicroPC(thread->readMicroPC());
691
692    if (!fromRom && !curMacroStaticInst) {
693        Request *ifetch_req = new Request();
694        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
695        setupFetchRequest(ifetch_req);
696        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
697                BaseTLB::Execute);
698    } else {
699        _status = IcacheWaitResponse;
700        completeIfetch(NULL);
701
702        numCycles += tickToCycles(curTick - previousTick);
703        previousTick = curTick;
704    }
705}
706
707
708void
709TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
710{
711    if (fault == NoFault) {
712        ifetch_pkt = new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
713        ifetch_pkt->dataStatic(&inst);
714
715        if (!icachePort.sendTiming(ifetch_pkt)) {
716            // Need to wait for retry
717            _status = IcacheRetry;
718        } else {
719            // Need to wait for cache to respond
720            _status = IcacheWaitResponse;
721            // ownership of packet transferred to memory system
722            ifetch_pkt = NULL;
723        }
724    } else {
725        delete req;
726        // fetch fault: advance directly to next instruction (fault handler)
727        advanceInst(fault);
728    }
729
730    numCycles += tickToCycles(curTick - previousTick);
731    previousTick = curTick;
732}
733
734
735void
736TimingSimpleCPU::advanceInst(Fault fault)
737{
738    if (fault != NoFault || !stayAtPC)
739        advancePC(fault);
740
741    if (_status == Running) {
742        // kick off fetch of next instruction... callback from icache
743        // response will cause that instruction to be executed,
744        // keeping the CPU running.
745        fetch();
746    }
747}
748
749
750void
751TimingSimpleCPU::completeIfetch(PacketPtr pkt)
752{
753    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
754
755    // received a response from the icache: execute the received
756    // instruction
757
758    assert(!pkt || !pkt->isError());
759    assert(_status == IcacheWaitResponse);
760
761    _status = Running;
762
763    numCycles += tickToCycles(curTick - previousTick);
764    previousTick = curTick;
765
766    if (getState() == SimObject::Draining) {
767        if (pkt) {
768            delete pkt->req;
769            delete pkt;
770        }
771
772        completeDrain();
773        return;
774    }
775
776    preExecute();
777    if (curStaticInst &&
778            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
779        // load or store: just send to dcache
780        Fault fault = curStaticInst->initiateAcc(this, traceData);
781        if (_status != Running) {
782            // instruction will complete in dcache response callback
783            assert(_status == DcacheWaitResponse ||
784                    _status == DcacheRetry || DTBWaitResponse);
785            assert(fault == NoFault);
786        } else {
787            if (fault != NoFault && traceData) {
788                // If there was a fault, we shouldn't trace this instruction.
789                delete traceData;
790                traceData = NULL;
791            }
792
793            postExecute();
794            // @todo remove me after debugging with legion done
795            if (curStaticInst && (!curStaticInst->isMicroop() ||
796                        curStaticInst->isFirstMicroop()))
797                instCnt++;
798            advanceInst(fault);
799        }
800    } else if (curStaticInst) {
801        // non-memory instruction: execute completely now
802        Fault fault = curStaticInst->execute(this, traceData);
803
804        // keep an instruction count
805        if (fault == NoFault)
806            countInst();
807        else if (traceData) {
808            // If there was a fault, we shouldn't trace this instruction.
809            delete traceData;
810            traceData = NULL;
811        }
812
813        postExecute();
814        // @todo remove me after debugging with legion done
815        if (curStaticInst && (!curStaticInst->isMicroop() ||
816                    curStaticInst->isFirstMicroop()))
817            instCnt++;
818        advanceInst(fault);
819    } else {
820        advanceInst(NoFault);
821    }
822
823    if (pkt) {
824        delete pkt->req;
825        delete pkt;
826    }
827}
828
829void
830TimingSimpleCPU::IcachePort::ITickEvent::process()
831{
832    cpu->completeIfetch(pkt);
833}
834
835bool
836TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
837{
838    if (pkt->isResponse() && !pkt->wasNacked()) {
839        // delay processing of returned data until next CPU clock edge
840        Tick next_tick = cpu->nextCycle(curTick);
841
842        if (next_tick == curTick)
843            cpu->completeIfetch(pkt);
844        else
845            tickEvent.schedule(pkt, next_tick);
846
847        return true;
848    }
849    else if (pkt->wasNacked()) {
850        assert(cpu->_status == IcacheWaitResponse);
851        pkt->reinitNacked();
852        if (!sendTiming(pkt)) {
853            cpu->_status = IcacheRetry;
854            cpu->ifetch_pkt = pkt;
855        }
856    }
857    //Snooping a Coherence Request, do nothing
858    return true;
859}
860
861void
862TimingSimpleCPU::IcachePort::recvRetry()
863{
864    // we shouldn't get a retry unless we have a packet that we're
865    // waiting to transmit
866    assert(cpu->ifetch_pkt != NULL);
867    assert(cpu->_status == IcacheRetry);
868    PacketPtr tmp = cpu->ifetch_pkt;
869    if (sendTiming(tmp)) {
870        cpu->_status = IcacheWaitResponse;
871        cpu->ifetch_pkt = NULL;
872    }
873}
874
875void
876TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
877{
878    // received a response from the dcache: complete the load or store
879    // instruction
880    assert(!pkt->isError());
881
882    numCycles += tickToCycles(curTick - previousTick);
883    previousTick = curTick;
884
885    if (pkt->senderState) {
886        SplitFragmentSenderState * send_state =
887            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
888        assert(send_state);
889        delete pkt->req;
890        delete pkt;
891        PacketPtr big_pkt = send_state->bigPkt;
892        delete send_state;
893
894        SplitMainSenderState * main_send_state =
895            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
896        assert(main_send_state);
897        // Record the fact that this packet is no longer outstanding.
898        assert(main_send_state->outstanding != 0);
899        main_send_state->outstanding--;
900
901        if (main_send_state->outstanding) {
902            return;
903        } else {
904            delete main_send_state;
905            big_pkt->senderState = NULL;
906            pkt = big_pkt;
907        }
908    }
909
910    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse);
911    _status = Running;
912
913    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
914
915    // keep an instruction count
916    if (fault == NoFault)
917        countInst();
918    else if (traceData) {
919        // If there was a fault, we shouldn't trace this instruction.
920        delete traceData;
921        traceData = NULL;
922    }
923
924    // the locked flag may be cleared on the response packet, so check
925    // pkt->req and not pkt to see if it was a load-locked
926    if (pkt->isRead() && pkt->req->isLLSC()) {
927        TheISA::handleLockedRead(thread, pkt->req);
928    }
929
930    delete pkt->req;
931    delete pkt;
932
933    postExecute();
934
935    if (getState() == SimObject::Draining) {
936        advancePC(fault);
937        completeDrain();
938
939        return;
940    }
941
942    advanceInst(fault);
943}
944
945
946void
947TimingSimpleCPU::completeDrain()
948{
949    DPRINTF(Config, "Done draining\n");
950    changeState(SimObject::Drained);
951    drainEvent->process();
952}
953
954void
955TimingSimpleCPU::DcachePort::setPeer(Port *port)
956{
957    Port::setPeer(port);
958
959#if FULL_SYSTEM
960    // Update the ThreadContext's memory ports (Functional/Virtual
961    // Ports)
962    cpu->tcBase()->connectMemPorts(cpu->tcBase());
963#endif
964}
965
966bool
967TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
968{
969    if (pkt->isResponse() && !pkt->wasNacked()) {
970        // delay processing of returned data until next CPU clock edge
971        Tick next_tick = cpu->nextCycle(curTick);
972
973        if (next_tick == curTick) {
974            cpu->completeDataAccess(pkt);
975        } else {
976            tickEvent.schedule(pkt, next_tick);
977        }
978
979        return true;
980    }
981    else if (pkt->wasNacked()) {
982        assert(cpu->_status == DcacheWaitResponse);
983        pkt->reinitNacked();
984        if (!sendTiming(pkt)) {
985            cpu->_status = DcacheRetry;
986            cpu->dcache_pkt = pkt;
987        }
988    }
989    //Snooping a Coherence Request, do nothing
990    return true;
991}
992
993void
994TimingSimpleCPU::DcachePort::DTickEvent::process()
995{
996    cpu->completeDataAccess(pkt);
997}
998
999void
1000TimingSimpleCPU::DcachePort::recvRetry()
1001{
1002    // we shouldn't get a retry unless we have a packet that we're
1003    // waiting to transmit
1004    assert(cpu->dcache_pkt != NULL);
1005    assert(cpu->_status == DcacheRetry);
1006    PacketPtr tmp = cpu->dcache_pkt;
1007    if (tmp->senderState) {
1008        // This is a packet from a split access.
1009        SplitFragmentSenderState * send_state =
1010            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
1011        assert(send_state);
1012        PacketPtr big_pkt = send_state->bigPkt;
1013
1014        SplitMainSenderState * main_send_state =
1015            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
1016        assert(main_send_state);
1017
1018        if (sendTiming(tmp)) {
1019            // If we were able to send without retrying, record that fact
1020            // and try sending the other fragment.
1021            send_state->clearFromParent();
1022            int other_index = main_send_state->getPendingFragment();
1023            if (other_index > 0) {
1024                tmp = main_send_state->fragments[other_index];
1025                cpu->dcache_pkt = tmp;
1026                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
1027                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
1028                    main_send_state->fragments[other_index] = NULL;
1029                }
1030            } else {
1031                cpu->_status = DcacheWaitResponse;
1032                // memory system takes ownership of packet
1033                cpu->dcache_pkt = NULL;
1034            }
1035        }
1036    } else if (sendTiming(tmp)) {
1037        cpu->_status = DcacheWaitResponse;
1038        // memory system takes ownership of packet
1039        cpu->dcache_pkt = NULL;
1040    }
1041}
1042
1043TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
1044    Tick t)
1045    : pkt(_pkt), cpu(_cpu)
1046{
1047    cpu->schedule(this, t);
1048}
1049
1050void
1051TimingSimpleCPU::IprEvent::process()
1052{
1053    cpu->completeDataAccess(pkt);
1054}
1055
1056const char *
1057TimingSimpleCPU::IprEvent::description() const
1058{
1059    return "Timing Simple CPU Delay IPR event";
1060}
1061
1062
1063void
1064TimingSimpleCPU::printAddr(Addr a)
1065{
1066    dcachePort.printAddr(a);
1067}
1068
1069
1070////////////////////////////////////////////////////////////////////////
1071//
1072//  TimingSimpleCPU Simulation Object
1073//
1074TimingSimpleCPU *
1075TimingSimpleCPUParams::create()
1076{
1077    numThreads = 1;
1078#if !FULL_SYSTEM
1079    if (workload.size() != 1)
1080        panic("only one workload allowed");
1081#endif
1082    return new TimingSimpleCPU(this);
1083}
1084