timing.cc revision 5744
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, _cpuId);
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    cpu->schedule(this, t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    previousTick = 0;
117    changeState(SimObject::Running);
118}
119
120
121TimingSimpleCPU::~TimingSimpleCPU()
122{
123}
124
125void
126TimingSimpleCPU::serialize(ostream &os)
127{
128    SimObject::State so_state = SimObject::getState();
129    SERIALIZE_ENUM(so_state);
130    BaseSimpleCPU::serialize(os);
131}
132
133void
134TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135{
136    SimObject::State so_state;
137    UNSERIALIZE_ENUM(so_state);
138    BaseSimpleCPU::unserialize(cp, section);
139}
140
141unsigned int
142TimingSimpleCPU::drain(Event *drain_event)
143{
144    // TimingSimpleCPU is ready to drain if it's not waiting for
145    // an access to complete.
146    if (_status == Idle || _status == Running || _status == SwitchedOut) {
147        changeState(SimObject::Drained);
148        return 0;
149    } else {
150        changeState(SimObject::Draining);
151        drainEvent = drain_event;
152        return 1;
153    }
154}
155
156void
157TimingSimpleCPU::resume()
158{
159    DPRINTF(SimpleCPU, "Resume\n");
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        if (fetchEvent.scheduled())
164           deschedule(fetchEvent);
165
166        schedule(fetchEvent, nextCycle());
167    }
168
169    changeState(SimObject::Running);
170}
171
172void
173TimingSimpleCPU::switchOut()
174{
175    assert(_status == Running || _status == Idle);
176    _status = SwitchedOut;
177    numCycles += tickToCycles(curTick - previousTick);
178
179    // If we've been scheduled to resume but are then told to switch out,
180    // we'll need to cancel it.
181    if (fetchEvent.scheduled())
182        deschedule(fetchEvent);
183}
184
185
186void
187TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
188{
189    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
190
191    // if any of this CPU's ThreadContexts are active, mark the CPU as
192    // running and schedule its tick event.
193    for (int i = 0; i < threadContexts.size(); ++i) {
194        ThreadContext *tc = threadContexts[i];
195        if (tc->status() == ThreadContext::Active && _status != Running) {
196            _status = Running;
197            break;
198        }
199    }
200
201    if (_status != Running) {
202        _status = Idle;
203    }
204    assert(threadContexts.size() == 1);
205    previousTick = curTick;
206}
207
208
209void
210TimingSimpleCPU::activateContext(int thread_num, int delay)
211{
212    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
213
214    assert(thread_num == 0);
215    assert(thread);
216
217    assert(_status == Idle);
218
219    notIdleFraction++;
220    _status = Running;
221
222    // kick things off by initiating the fetch of the next instruction
223    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
224}
225
226
227void
228TimingSimpleCPU::suspendContext(int thread_num)
229{
230    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
231
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244bool
245TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
246{
247    RequestPtr req = pkt->req;
248    if (req->isMmapedIpr()) {
249        Tick delay;
250        delay = TheISA::handleIprRead(thread->getTC(), pkt);
251        new IprEvent(pkt, this, nextCycle(curTick + delay));
252        _status = DcacheWaitResponse;
253        dcache_pkt = NULL;
254    } else if (!dcachePort.sendTiming(pkt)) {
255        _status = DcacheRetry;
256        dcache_pkt = pkt;
257    } else {
258        _status = DcacheWaitResponse;
259        // memory system takes ownership of packet
260        dcache_pkt = NULL;
261    }
262    return dcache_pkt == NULL;
263}
264
265Fault
266TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
267        RequestPtr &req, Addr split_addr, uint8_t *data, bool read)
268{
269    Fault fault;
270    RequestPtr req1, req2;
271    assert(!req->isLocked() && !req->isSwap());
272    req->splitOnVaddr(split_addr, req1, req2);
273
274    pkt1 = pkt2 = NULL;
275    if ((fault = buildPacket(pkt1, req1, read)) != NoFault ||
276            (fault = buildPacket(pkt2, req2, read)) != NoFault) {
277        delete req;
278        delete pkt1;
279        req = NULL;
280        pkt1 = NULL;
281        return fault;
282    }
283
284    assert(!req1->isMmapedIpr() && !req2->isMmapedIpr());
285
286    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags());
287    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand(),
288                               Packet::Broadcast);
289
290    pkt->dataDynamic<uint8_t>(data);
291    pkt1->dataStatic<uint8_t>(data);
292    pkt2->dataStatic<uint8_t>(data + req1->getSize());
293
294    SplitMainSenderState * main_send_state = new SplitMainSenderState;
295    pkt->senderState = main_send_state;
296    main_send_state->fragments[0] = pkt1;
297    main_send_state->fragments[1] = pkt2;
298    main_send_state->outstanding = 2;
299    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
300    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
301    return fault;
302}
303
304Fault
305TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr &req, bool read)
306{
307    Fault fault = read ? thread->translateDataReadReq(req) :
308                         thread->translateDataWriteReq(req);
309    MemCmd cmd;
310    if (fault != NoFault) {
311        delete req;
312        req = NULL;
313        pkt = NULL;
314        return fault;
315    } else if (read) {
316        cmd = MemCmd::ReadReq;
317        if (req->isLocked())
318            cmd = MemCmd::LoadLockedReq;
319    } else {
320        cmd = MemCmd::WriteReq;
321        if (req->isLocked()) {
322            cmd = MemCmd::StoreCondReq;
323        } else if (req->isSwap()) {
324            cmd = MemCmd::SwapReq;
325        }
326    }
327    pkt = new Packet(req, cmd, Packet::Broadcast);
328    return NoFault;
329}
330
331template <class T>
332Fault
333TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
334{
335    Fault fault;
336    const int asid = 0;
337    const int thread_id = 0;
338    const Addr pc = thread->readPC();
339    int block_size = dcachePort.peerBlockSize();
340    int data_size = sizeof(T);
341
342    PacketPtr pkt;
343    RequestPtr req  = new Request(asid, addr, data_size,
344                                  flags, pc, _cpuId, thread_id);
345
346    Addr split_addr = roundDown(addr + data_size - 1, block_size);
347    assert(split_addr <= addr || split_addr - addr < block_size);
348
349    if (split_addr > addr) {
350        PacketPtr pkt1, pkt2;
351        this->buildSplitPacket(pkt1, pkt2, req,
352                split_addr, (uint8_t *)(new T), true);
353        if (handleReadPacket(pkt1)) {
354            SplitFragmentSenderState * send_state =
355                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
356            send_state->clearFromParent();
357            if (handleReadPacket(pkt2)) {
358                send_state =
359                    dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
360                send_state->clearFromParent();
361            }
362        }
363    } else {
364        Fault fault = buildPacket(pkt, req, true);
365        if (fault != NoFault) {
366            return fault;
367        }
368        pkt->dataDynamic<T>(new T);
369
370        handleReadPacket(pkt);
371    }
372
373    if (traceData) {
374        traceData->setData(data);
375        traceData->setAddr(addr);
376    }
377
378    // This will need a new way to tell if it has a dcache attached.
379    if (req->isUncacheable())
380        recordEvent("Uncached Read");
381
382    return NoFault;
383}
384
385Fault
386TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
387        int size, unsigned flags)
388{
389    Request *req =
390        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
391
392    if (traceData) {
393        traceData->setAddr(vaddr);
394    }
395
396    Fault fault = thread->translateDataWriteReq(req);
397
398    if (fault == NoFault)
399        paddr = req->getPaddr();
400
401    delete req;
402    return fault;
403}
404
405#ifndef DOXYGEN_SHOULD_SKIP_THIS
406
407template
408Fault
409TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
410
411template
412Fault
413TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
414
415template
416Fault
417TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
418
419template
420Fault
421TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
422
423template
424Fault
425TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
426
427template
428Fault
429TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
430
431#endif //DOXYGEN_SHOULD_SKIP_THIS
432
433template<>
434Fault
435TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
436{
437    return read(addr, *(uint64_t*)&data, flags);
438}
439
440template<>
441Fault
442TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
443{
444    return read(addr, *(uint32_t*)&data, flags);
445}
446
447
448template<>
449Fault
450TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
451{
452    return read(addr, (uint32_t&)data, flags);
453}
454
455bool
456TimingSimpleCPU::handleWritePacket()
457{
458    RequestPtr req = dcache_pkt->req;
459    if (req->isMmapedIpr()) {
460        Tick delay;
461        delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
462        new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
463        _status = DcacheWaitResponse;
464        dcache_pkt = NULL;
465    } else if (!dcachePort.sendTiming(dcache_pkt)) {
466        _status = DcacheRetry;
467    } else {
468        _status = DcacheWaitResponse;
469        // memory system takes ownership of packet
470        dcache_pkt = NULL;
471    }
472    return dcache_pkt == NULL;
473}
474
475template <class T>
476Fault
477TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
478{
479    const int asid = 0;
480    const int thread_id = 0;
481    const Addr pc = thread->readPC();
482    int block_size = dcachePort.peerBlockSize();
483    int data_size = sizeof(T);
484
485    RequestPtr req = new Request(asid, addr, data_size,
486                                 flags, pc, _cpuId, thread_id);
487
488    Addr split_addr = roundDown(addr + data_size - 1, block_size);
489    assert(split_addr <= addr || split_addr - addr < block_size);
490
491    if (split_addr > addr) {
492        PacketPtr pkt1, pkt2;
493        T *dataP = new T;
494        *dataP = data;
495        Fault fault = this->buildSplitPacket(pkt1, pkt2, req, split_addr,
496                                             (uint8_t *)dataP, false);
497        if (fault != NoFault)
498            return fault;
499        dcache_pkt = pkt1;
500        if (handleWritePacket()) {
501            SplitFragmentSenderState * send_state =
502                dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
503            send_state->clearFromParent();
504            dcache_pkt = pkt2;
505            if (handleReadPacket(pkt2)) {
506                send_state =
507                    dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
508                send_state->clearFromParent();
509            }
510        }
511    } else {
512        bool do_access = true;  // flag to suppress cache access
513
514        Fault fault = buildPacket(dcache_pkt, req, false);
515        if (fault != NoFault)
516            return fault;
517
518        if (req->isLocked()) {
519            do_access = TheISA::handleLockedWrite(thread, req);
520        } else if (req->isCondSwap()) {
521            assert(res);
522            req->setExtraData(*res);
523        }
524
525        dcache_pkt->allocate();
526        if (req->isMmapedIpr())
527            dcache_pkt->set(htog(data));
528        else
529            dcache_pkt->set(data);
530
531        if (do_access)
532            handleWritePacket();
533    }
534
535    if (traceData) {
536        traceData->setAddr(req->getVaddr());
537        traceData->setData(data);
538    }
539
540    // This will need a new way to tell if it's hooked up to a cache or not.
541    if (req->isUncacheable())
542        recordEvent("Uncached Write");
543
544    // If the write needs to have a fault on the access, consider calling
545    // changeStatus() and changing it to "bad addr write" or something.
546    return NoFault;
547}
548
549Fault
550TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
551        int size, unsigned flags)
552{
553    Request *req =
554        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
555
556    if (traceData) {
557        traceData->setAddr(vaddr);
558    }
559
560    Fault fault = thread->translateDataWriteReq(req);
561
562    if (fault == NoFault)
563        paddr = req->getPaddr();
564
565    delete req;
566    return fault;
567}
568
569
570#ifndef DOXYGEN_SHOULD_SKIP_THIS
571template
572Fault
573TimingSimpleCPU::write(Twin32_t data, Addr addr,
574                       unsigned flags, uint64_t *res);
575
576template
577Fault
578TimingSimpleCPU::write(Twin64_t data, Addr addr,
579                       unsigned flags, uint64_t *res);
580
581template
582Fault
583TimingSimpleCPU::write(uint64_t data, Addr addr,
584                       unsigned flags, uint64_t *res);
585
586template
587Fault
588TimingSimpleCPU::write(uint32_t data, Addr addr,
589                       unsigned flags, uint64_t *res);
590
591template
592Fault
593TimingSimpleCPU::write(uint16_t data, Addr addr,
594                       unsigned flags, uint64_t *res);
595
596template
597Fault
598TimingSimpleCPU::write(uint8_t data, Addr addr,
599                       unsigned flags, uint64_t *res);
600
601#endif //DOXYGEN_SHOULD_SKIP_THIS
602
603template<>
604Fault
605TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
606{
607    return write(*(uint64_t*)&data, addr, flags, res);
608}
609
610template<>
611Fault
612TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
613{
614    return write(*(uint32_t*)&data, addr, flags, res);
615}
616
617
618template<>
619Fault
620TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
621{
622    return write((uint32_t)data, addr, flags, res);
623}
624
625
626void
627TimingSimpleCPU::fetch()
628{
629    DPRINTF(SimpleCPU, "Fetch\n");
630
631    if (!curStaticInst || !curStaticInst->isDelayedCommit())
632        checkForInterrupts();
633
634    checkPcEventQueue();
635
636    bool fromRom = isRomMicroPC(thread->readMicroPC());
637
638    if (!fromRom) {
639        Request *ifetch_req = new Request();
640        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
641        Fault fault = setupFetchRequest(ifetch_req);
642
643        ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
644        ifetch_pkt->dataStatic(&inst);
645
646        if (fault == NoFault) {
647            if (!icachePort.sendTiming(ifetch_pkt)) {
648                // Need to wait for retry
649                _status = IcacheRetry;
650            } else {
651                // Need to wait for cache to respond
652                _status = IcacheWaitResponse;
653                // ownership of packet transferred to memory system
654                ifetch_pkt = NULL;
655            }
656        } else {
657            delete ifetch_req;
658            delete ifetch_pkt;
659            // fetch fault: advance directly to next instruction (fault handler)
660            advanceInst(fault);
661        }
662    } else {
663        _status = IcacheWaitResponse;
664        completeIfetch(NULL);
665    }
666
667    numCycles += tickToCycles(curTick - previousTick);
668    previousTick = curTick;
669}
670
671
672void
673TimingSimpleCPU::advanceInst(Fault fault)
674{
675    if (fault != NoFault || !stayAtPC)
676        advancePC(fault);
677
678    if (_status == Running) {
679        // kick off fetch of next instruction... callback from icache
680        // response will cause that instruction to be executed,
681        // keeping the CPU running.
682        fetch();
683    }
684}
685
686
687void
688TimingSimpleCPU::completeIfetch(PacketPtr pkt)
689{
690    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
691
692    // received a response from the icache: execute the received
693    // instruction
694
695    assert(!pkt || !pkt->isError());
696    assert(_status == IcacheWaitResponse);
697
698    _status = Running;
699
700    numCycles += tickToCycles(curTick - previousTick);
701    previousTick = curTick;
702
703    if (getState() == SimObject::Draining) {
704        if (pkt) {
705            delete pkt->req;
706            delete pkt;
707        }
708
709        completeDrain();
710        return;
711    }
712
713    preExecute();
714    if (curStaticInst &&
715            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
716        // load or store: just send to dcache
717        Fault fault = curStaticInst->initiateAcc(this, traceData);
718        if (_status != Running) {
719            // instruction will complete in dcache response callback
720            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
721            assert(fault == NoFault);
722        } else {
723            if (fault == NoFault) {
724                // Note that ARM can have NULL packets if the instruction gets
725                // squashed due to predication
726                // early fail on store conditional: complete now
727                assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
728
729                fault = curStaticInst->completeAcc(dcache_pkt, this,
730                                                   traceData);
731                if (dcache_pkt != NULL)
732                {
733                    delete dcache_pkt->req;
734                    delete dcache_pkt;
735                    dcache_pkt = NULL;
736                }
737
738                // keep an instruction count
739                if (fault == NoFault)
740                    countInst();
741            } else if (traceData) {
742                // If there was a fault, we shouldn't trace this instruction.
743                delete traceData;
744                traceData = NULL;
745            }
746
747            postExecute();
748            // @todo remove me after debugging with legion done
749            if (curStaticInst && (!curStaticInst->isMicroop() ||
750                        curStaticInst->isFirstMicroop()))
751                instCnt++;
752            advanceInst(fault);
753        }
754    } else if (curStaticInst) {
755        // non-memory instruction: execute completely now
756        Fault fault = curStaticInst->execute(this, traceData);
757
758        // keep an instruction count
759        if (fault == NoFault)
760            countInst();
761        else if (traceData) {
762            // If there was a fault, we shouldn't trace this instruction.
763            delete traceData;
764            traceData = NULL;
765        }
766
767        postExecute();
768        // @todo remove me after debugging with legion done
769        if (curStaticInst && (!curStaticInst->isMicroop() ||
770                    curStaticInst->isFirstMicroop()))
771            instCnt++;
772        advanceInst(fault);
773    } else {
774        advanceInst(NoFault);
775    }
776
777    if (pkt) {
778        delete pkt->req;
779        delete pkt;
780    }
781}
782
783void
784TimingSimpleCPU::IcachePort::ITickEvent::process()
785{
786    cpu->completeIfetch(pkt);
787}
788
789bool
790TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
791{
792    if (pkt->isResponse() && !pkt->wasNacked()) {
793        // delay processing of returned data until next CPU clock edge
794        Tick next_tick = cpu->nextCycle(curTick);
795
796        if (next_tick == curTick)
797            cpu->completeIfetch(pkt);
798        else
799            tickEvent.schedule(pkt, next_tick);
800
801        return true;
802    }
803    else if (pkt->wasNacked()) {
804        assert(cpu->_status == IcacheWaitResponse);
805        pkt->reinitNacked();
806        if (!sendTiming(pkt)) {
807            cpu->_status = IcacheRetry;
808            cpu->ifetch_pkt = pkt;
809        }
810    }
811    //Snooping a Coherence Request, do nothing
812    return true;
813}
814
815void
816TimingSimpleCPU::IcachePort::recvRetry()
817{
818    // we shouldn't get a retry unless we have a packet that we're
819    // waiting to transmit
820    assert(cpu->ifetch_pkt != NULL);
821    assert(cpu->_status == IcacheRetry);
822    PacketPtr tmp = cpu->ifetch_pkt;
823    if (sendTiming(tmp)) {
824        cpu->_status = IcacheWaitResponse;
825        cpu->ifetch_pkt = NULL;
826    }
827}
828
829void
830TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
831{
832    // received a response from the dcache: complete the load or store
833    // instruction
834    assert(!pkt->isError());
835
836    numCycles += tickToCycles(curTick - previousTick);
837    previousTick = curTick;
838
839    if (pkt->senderState) {
840        SplitFragmentSenderState * send_state =
841            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
842        assert(send_state);
843        delete pkt->req;
844        delete pkt;
845        PacketPtr big_pkt = send_state->bigPkt;
846        delete send_state;
847
848        SplitMainSenderState * main_send_state =
849            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
850        assert(main_send_state);
851        // Record the fact that this packet is no longer outstanding.
852        assert(main_send_state->outstanding != 0);
853        main_send_state->outstanding--;
854
855        if (main_send_state->outstanding) {
856            return;
857        } else {
858            delete main_send_state;
859            big_pkt->senderState = NULL;
860            pkt = big_pkt;
861        }
862    }
863
864    assert(_status == DcacheWaitResponse);
865    _status = Running;
866
867    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
868
869    // keep an instruction count
870    if (fault == NoFault)
871        countInst();
872    else if (traceData) {
873        // If there was a fault, we shouldn't trace this instruction.
874        delete traceData;
875        traceData = NULL;
876    }
877
878    // the locked flag may be cleared on the response packet, so check
879    // pkt->req and not pkt to see if it was a load-locked
880    if (pkt->isRead() && pkt->req->isLocked()) {
881        TheISA::handleLockedRead(thread, pkt->req);
882    }
883
884    delete pkt->req;
885    delete pkt;
886
887    postExecute();
888
889    if (getState() == SimObject::Draining) {
890        advancePC(fault);
891        completeDrain();
892
893        return;
894    }
895
896    advanceInst(fault);
897}
898
899
900void
901TimingSimpleCPU::completeDrain()
902{
903    DPRINTF(Config, "Done draining\n");
904    changeState(SimObject::Drained);
905    drainEvent->process();
906}
907
908void
909TimingSimpleCPU::DcachePort::setPeer(Port *port)
910{
911    Port::setPeer(port);
912
913#if FULL_SYSTEM
914    // Update the ThreadContext's memory ports (Functional/Virtual
915    // Ports)
916    cpu->tcBase()->connectMemPorts(cpu->tcBase());
917#endif
918}
919
920bool
921TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
922{
923    if (pkt->isResponse() && !pkt->wasNacked()) {
924        // delay processing of returned data until next CPU clock edge
925        Tick next_tick = cpu->nextCycle(curTick);
926
927        if (next_tick == curTick) {
928            cpu->completeDataAccess(pkt);
929        } else {
930            tickEvent.schedule(pkt, next_tick);
931        }
932
933        return true;
934    }
935    else if (pkt->wasNacked()) {
936        assert(cpu->_status == DcacheWaitResponse);
937        pkt->reinitNacked();
938        if (!sendTiming(pkt)) {
939            cpu->_status = DcacheRetry;
940            cpu->dcache_pkt = pkt;
941        }
942    }
943    //Snooping a Coherence Request, do nothing
944    return true;
945}
946
947void
948TimingSimpleCPU::DcachePort::DTickEvent::process()
949{
950    cpu->completeDataAccess(pkt);
951}
952
953void
954TimingSimpleCPU::DcachePort::recvRetry()
955{
956    // we shouldn't get a retry unless we have a packet that we're
957    // waiting to transmit
958    assert(cpu->dcache_pkt != NULL);
959    assert(cpu->_status == DcacheRetry);
960    PacketPtr tmp = cpu->dcache_pkt;
961    if (tmp->senderState) {
962        // This is a packet from a split access.
963        SplitFragmentSenderState * send_state =
964            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
965        assert(send_state);
966        PacketPtr big_pkt = send_state->bigPkt;
967
968        SplitMainSenderState * main_send_state =
969            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
970        assert(main_send_state);
971
972        if (sendTiming(tmp)) {
973            // If we were able to send without retrying, record that fact
974            // and try sending the other fragment.
975            send_state->clearFromParent();
976            int other_index = main_send_state->getPendingFragment();
977            if (other_index > 0) {
978                tmp = main_send_state->fragments[other_index];
979                cpu->dcache_pkt = tmp;
980                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
981                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
982                    main_send_state->fragments[other_index] = NULL;
983                }
984            } else {
985                cpu->_status = DcacheWaitResponse;
986                // memory system takes ownership of packet
987                cpu->dcache_pkt = NULL;
988            }
989        }
990    } else if (sendTiming(tmp)) {
991        cpu->_status = DcacheWaitResponse;
992        // memory system takes ownership of packet
993        cpu->dcache_pkt = NULL;
994    }
995}
996
997TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
998    Tick t)
999    : pkt(_pkt), cpu(_cpu)
1000{
1001    cpu->schedule(this, t);
1002}
1003
1004void
1005TimingSimpleCPU::IprEvent::process()
1006{
1007    cpu->completeDataAccess(pkt);
1008}
1009
1010const char *
1011TimingSimpleCPU::IprEvent::description() const
1012{
1013    return "Timing Simple CPU Delay IPR event";
1014}
1015
1016
1017void
1018TimingSimpleCPU::printAddr(Addr a)
1019{
1020    dcachePort.printAddr(a);
1021}
1022
1023
1024////////////////////////////////////////////////////////////////////////
1025//
1026//  TimingSimpleCPU Simulation Object
1027//
1028TimingSimpleCPU *
1029TimingSimpleCPUParams::create()
1030{
1031    numThreads = 1;
1032#if !FULL_SYSTEM
1033    if (workload.size() != 1)
1034        panic("only one workload allowed");
1035#endif
1036    return new TimingSimpleCPU(this);
1037}
1038