timing.cc revision 5726
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, _cpuId);
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    cpu->schedule(this, t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    previousTick = 0;
117    changeState(SimObject::Running);
118}
119
120
121TimingSimpleCPU::~TimingSimpleCPU()
122{
123}
124
125void
126TimingSimpleCPU::serialize(ostream &os)
127{
128    SimObject::State so_state = SimObject::getState();
129    SERIALIZE_ENUM(so_state);
130    BaseSimpleCPU::serialize(os);
131}
132
133void
134TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135{
136    SimObject::State so_state;
137    UNSERIALIZE_ENUM(so_state);
138    BaseSimpleCPU::unserialize(cp, section);
139}
140
141unsigned int
142TimingSimpleCPU::drain(Event *drain_event)
143{
144    // TimingSimpleCPU is ready to drain if it's not waiting for
145    // an access to complete.
146    if (_status == Idle || _status == Running || _status == SwitchedOut) {
147        changeState(SimObject::Drained);
148        return 0;
149    } else {
150        changeState(SimObject::Draining);
151        drainEvent = drain_event;
152        return 1;
153    }
154}
155
156void
157TimingSimpleCPU::resume()
158{
159    DPRINTF(SimpleCPU, "Resume\n");
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        if (fetchEvent.scheduled())
164           deschedule(fetchEvent);
165
166        schedule(fetchEvent, nextCycle());
167    }
168
169    changeState(SimObject::Running);
170}
171
172void
173TimingSimpleCPU::switchOut()
174{
175    assert(_status == Running || _status == Idle);
176    _status = SwitchedOut;
177    numCycles += tickToCycles(curTick - previousTick);
178
179    // If we've been scheduled to resume but are then told to switch out,
180    // we'll need to cancel it.
181    if (fetchEvent.scheduled())
182        deschedule(fetchEvent);
183}
184
185
186void
187TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
188{
189    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
190
191    // if any of this CPU's ThreadContexts are active, mark the CPU as
192    // running and schedule its tick event.
193    for (int i = 0; i < threadContexts.size(); ++i) {
194        ThreadContext *tc = threadContexts[i];
195        if (tc->status() == ThreadContext::Active && _status != Running) {
196            _status = Running;
197            break;
198        }
199    }
200
201    if (_status != Running) {
202        _status = Idle;
203    }
204    assert(threadContexts.size() == 1);
205    previousTick = curTick;
206}
207
208
209void
210TimingSimpleCPU::activateContext(int thread_num, int delay)
211{
212    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
213
214    assert(thread_num == 0);
215    assert(thread);
216
217    assert(_status == Idle);
218
219    notIdleFraction++;
220    _status = Running;
221
222    // kick things off by initiating the fetch of the next instruction
223    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
224}
225
226
227void
228TimingSimpleCPU::suspendContext(int thread_num)
229{
230    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
231
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244
245template <class T>
246Fault
247TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248{
249    Request *req =
250        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251                    _cpuId, /* thread ID */ 0);
252
253    if (traceData) {
254        traceData->setAddr(req->getVaddr());
255    }
256
257   // translate to physical address
258    Fault fault = thread->translateDataReadReq(req);
259
260    // Now do the access.
261    if (fault == NoFault) {
262        PacketPtr pkt =
263            new Packet(req,
264                       (req->isLocked() ?
265                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
266                       Packet::Broadcast);
267        pkt->dataDynamic<T>(new T);
268
269        if (req->isMmapedIpr()) {
270            Tick delay;
271            delay = TheISA::handleIprRead(thread->getTC(), pkt);
272            new IprEvent(pkt, this, nextCycle(curTick + delay));
273            _status = DcacheWaitResponse;
274            dcache_pkt = NULL;
275        } else if (!dcachePort.sendTiming(pkt)) {
276            _status = DcacheRetry;
277            dcache_pkt = pkt;
278        } else {
279            _status = DcacheWaitResponse;
280            // memory system takes ownership of packet
281            dcache_pkt = NULL;
282        }
283
284        // This will need a new way to tell if it has a dcache attached.
285        if (req->isUncacheable())
286            recordEvent("Uncached Read");
287    } else {
288        delete req;
289    }
290
291    if (traceData) {
292        traceData->setData(data);
293    }
294    return fault;
295}
296
297Fault
298TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
299        int size, unsigned flags)
300{
301    Request *req =
302        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
303
304    if (traceData) {
305        traceData->setAddr(vaddr);
306    }
307
308    Fault fault = thread->translateDataWriteReq(req);
309
310    if (fault == NoFault)
311        paddr = req->getPaddr();
312
313    delete req;
314    return fault;
315}
316
317#ifndef DOXYGEN_SHOULD_SKIP_THIS
318
319template
320Fault
321TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
322
323template
324Fault
325TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
326
327template
328Fault
329TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
330
331template
332Fault
333TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
334
335template
336Fault
337TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
338
339template
340Fault
341TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
348{
349    return read(addr, *(uint64_t*)&data, flags);
350}
351
352template<>
353Fault
354TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
355{
356    return read(addr, *(uint32_t*)&data, flags);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
363{
364    return read(addr, (uint32_t&)data, flags);
365}
366
367
368template <class T>
369Fault
370TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
371{
372    Request *req =
373        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
374                    _cpuId, /* thread ID */ 0);
375
376    if (traceData) {
377        traceData->setAddr(req->getVaddr());
378    }
379
380    // translate to physical address
381    Fault fault = thread->translateDataWriteReq(req);
382
383    // Now do the access.
384    if (fault == NoFault) {
385        MemCmd cmd = MemCmd::WriteReq; // default
386        bool do_access = true;  // flag to suppress cache access
387
388        if (req->isLocked()) {
389            cmd = MemCmd::StoreCondReq;
390            do_access = TheISA::handleLockedWrite(thread, req);
391        } else if (req->isSwap()) {
392            cmd = MemCmd::SwapReq;
393            if (req->isCondSwap()) {
394                assert(res);
395                req->setExtraData(*res);
396            }
397        }
398
399        // Note: need to allocate dcache_pkt even if do_access is
400        // false, as it's used unconditionally to call completeAcc().
401        assert(dcache_pkt == NULL);
402        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
403        dcache_pkt->allocate();
404        dcache_pkt->set(data);
405
406        if (do_access) {
407            if (req->isMmapedIpr()) {
408                Tick delay;
409                dcache_pkt->set(htog(data));
410                delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
411                new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
412                _status = DcacheWaitResponse;
413                dcache_pkt = NULL;
414            } else if (!dcachePort.sendTiming(dcache_pkt)) {
415                _status = DcacheRetry;
416            } else {
417                _status = DcacheWaitResponse;
418                // memory system takes ownership of packet
419                dcache_pkt = NULL;
420            }
421        }
422        // This will need a new way to tell if it's hooked up to a cache or not.
423        if (req->isUncacheable())
424            recordEvent("Uncached Write");
425    } else {
426        delete req;
427    }
428
429    if (traceData) {
430        traceData->setData(data);
431    }
432
433    // If the write needs to have a fault on the access, consider calling
434    // changeStatus() and changing it to "bad addr write" or something.
435    return fault;
436}
437
438Fault
439TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
440        int size, unsigned flags)
441{
442    Request *req =
443        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
444
445    if (traceData) {
446        traceData->setAddr(vaddr);
447    }
448
449    Fault fault = thread->translateDataWriteReq(req);
450
451    if (fault == NoFault)
452        paddr = req->getPaddr();
453
454    delete req;
455    return fault;
456}
457
458
459#ifndef DOXYGEN_SHOULD_SKIP_THIS
460template
461Fault
462TimingSimpleCPU::write(Twin32_t data, Addr addr,
463                       unsigned flags, uint64_t *res);
464
465template
466Fault
467TimingSimpleCPU::write(Twin64_t data, Addr addr,
468                       unsigned flags, uint64_t *res);
469
470template
471Fault
472TimingSimpleCPU::write(uint64_t data, Addr addr,
473                       unsigned flags, uint64_t *res);
474
475template
476Fault
477TimingSimpleCPU::write(uint32_t data, Addr addr,
478                       unsigned flags, uint64_t *res);
479
480template
481Fault
482TimingSimpleCPU::write(uint16_t data, Addr addr,
483                       unsigned flags, uint64_t *res);
484
485template
486Fault
487TimingSimpleCPU::write(uint8_t data, Addr addr,
488                       unsigned flags, uint64_t *res);
489
490#endif //DOXYGEN_SHOULD_SKIP_THIS
491
492template<>
493Fault
494TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
495{
496    return write(*(uint64_t*)&data, addr, flags, res);
497}
498
499template<>
500Fault
501TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
502{
503    return write(*(uint32_t*)&data, addr, flags, res);
504}
505
506
507template<>
508Fault
509TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
510{
511    return write((uint32_t)data, addr, flags, res);
512}
513
514
515void
516TimingSimpleCPU::fetch()
517{
518    DPRINTF(SimpleCPU, "Fetch\n");
519
520    if (!curStaticInst || !curStaticInst->isDelayedCommit())
521        checkForInterrupts();
522
523    checkPcEventQueue();
524
525    bool fromRom = isRomMicroPC(thread->readMicroPC());
526
527    if (!fromRom) {
528        Request *ifetch_req = new Request();
529        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
530        Fault fault = setupFetchRequest(ifetch_req);
531
532        ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
533        ifetch_pkt->dataStatic(&inst);
534
535        if (fault == NoFault) {
536            if (!icachePort.sendTiming(ifetch_pkt)) {
537                // Need to wait for retry
538                _status = IcacheRetry;
539            } else {
540                // Need to wait for cache to respond
541                _status = IcacheWaitResponse;
542                // ownership of packet transferred to memory system
543                ifetch_pkt = NULL;
544            }
545        } else {
546            delete ifetch_req;
547            delete ifetch_pkt;
548            // fetch fault: advance directly to next instruction (fault handler)
549            advanceInst(fault);
550        }
551    } else {
552        _status = IcacheWaitResponse;
553        completeIfetch(NULL);
554    }
555
556    numCycles += tickToCycles(curTick - previousTick);
557    previousTick = curTick;
558}
559
560
561void
562TimingSimpleCPU::advanceInst(Fault fault)
563{
564    if (fault != NoFault || !stayAtPC)
565        advancePC(fault);
566
567    if (_status == Running) {
568        // kick off fetch of next instruction... callback from icache
569        // response will cause that instruction to be executed,
570        // keeping the CPU running.
571        fetch();
572    }
573}
574
575
576void
577TimingSimpleCPU::completeIfetch(PacketPtr pkt)
578{
579    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
580
581    // received a response from the icache: execute the received
582    // instruction
583
584    assert(!pkt || !pkt->isError());
585    assert(_status == IcacheWaitResponse);
586
587    _status = Running;
588
589    numCycles += tickToCycles(curTick - previousTick);
590    previousTick = curTick;
591
592    if (getState() == SimObject::Draining) {
593        if (pkt) {
594            delete pkt->req;
595            delete pkt;
596        }
597
598        completeDrain();
599        return;
600    }
601
602    preExecute();
603    if (curStaticInst &&
604            curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
605        // load or store: just send to dcache
606        Fault fault = curStaticInst->initiateAcc(this, traceData);
607        if (_status != Running) {
608            // instruction will complete in dcache response callback
609            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
610            assert(fault == NoFault);
611        } else {
612            if (fault == NoFault) {
613                // Note that ARM can have NULL packets if the instruction gets
614                // squashed due to predication
615                // early fail on store conditional: complete now
616                assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
617
618                fault = curStaticInst->completeAcc(dcache_pkt, this,
619                                                   traceData);
620                if (dcache_pkt != NULL)
621                {
622                    delete dcache_pkt->req;
623                    delete dcache_pkt;
624                    dcache_pkt = NULL;
625                }
626
627                // keep an instruction count
628                if (fault == NoFault)
629                    countInst();
630            } else if (traceData) {
631                // If there was a fault, we shouldn't trace this instruction.
632                delete traceData;
633                traceData = NULL;
634            }
635
636            postExecute();
637            // @todo remove me after debugging with legion done
638            if (curStaticInst && (!curStaticInst->isMicroop() ||
639                        curStaticInst->isFirstMicroop()))
640                instCnt++;
641            advanceInst(fault);
642        }
643    } else if (curStaticInst) {
644        // non-memory instruction: execute completely now
645        Fault fault = curStaticInst->execute(this, traceData);
646
647        // keep an instruction count
648        if (fault == NoFault)
649            countInst();
650        else if (traceData) {
651            // If there was a fault, we shouldn't trace this instruction.
652            delete traceData;
653            traceData = NULL;
654        }
655
656        postExecute();
657        // @todo remove me after debugging with legion done
658        if (curStaticInst && (!curStaticInst->isMicroop() ||
659                    curStaticInst->isFirstMicroop()))
660            instCnt++;
661        advanceInst(fault);
662    } else {
663        advanceInst(NoFault);
664    }
665
666    if (pkt) {
667        delete pkt->req;
668        delete pkt;
669    }
670}
671
672void
673TimingSimpleCPU::IcachePort::ITickEvent::process()
674{
675    cpu->completeIfetch(pkt);
676}
677
678bool
679TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
680{
681    if (pkt->isResponse() && !pkt->wasNacked()) {
682        // delay processing of returned data until next CPU clock edge
683        Tick next_tick = cpu->nextCycle(curTick);
684
685        if (next_tick == curTick)
686            cpu->completeIfetch(pkt);
687        else
688            tickEvent.schedule(pkt, next_tick);
689
690        return true;
691    }
692    else if (pkt->wasNacked()) {
693        assert(cpu->_status == IcacheWaitResponse);
694        pkt->reinitNacked();
695        if (!sendTiming(pkt)) {
696            cpu->_status = IcacheRetry;
697            cpu->ifetch_pkt = pkt;
698        }
699    }
700    //Snooping a Coherence Request, do nothing
701    return true;
702}
703
704void
705TimingSimpleCPU::IcachePort::recvRetry()
706{
707    // we shouldn't get a retry unless we have a packet that we're
708    // waiting to transmit
709    assert(cpu->ifetch_pkt != NULL);
710    assert(cpu->_status == IcacheRetry);
711    PacketPtr tmp = cpu->ifetch_pkt;
712    if (sendTiming(tmp)) {
713        cpu->_status = IcacheWaitResponse;
714        cpu->ifetch_pkt = NULL;
715    }
716}
717
718void
719TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
720{
721    // received a response from the dcache: complete the load or store
722    // instruction
723    assert(!pkt->isError());
724    assert(_status == DcacheWaitResponse);
725    _status = Running;
726
727    numCycles += tickToCycles(curTick - previousTick);
728    previousTick = curTick;
729
730    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
731
732    // keep an instruction count
733    if (fault == NoFault)
734        countInst();
735    else if (traceData) {
736        // If there was a fault, we shouldn't trace this instruction.
737        delete traceData;
738        traceData = NULL;
739    }
740
741    // the locked flag may be cleared on the response packet, so check
742    // pkt->req and not pkt to see if it was a load-locked
743    if (pkt->isRead() && pkt->req->isLocked()) {
744        TheISA::handleLockedRead(thread, pkt->req);
745    }
746
747    delete pkt->req;
748    delete pkt;
749
750    postExecute();
751
752    if (getState() == SimObject::Draining) {
753        advancePC(fault);
754        completeDrain();
755
756        return;
757    }
758
759    advanceInst(fault);
760}
761
762
763void
764TimingSimpleCPU::completeDrain()
765{
766    DPRINTF(Config, "Done draining\n");
767    changeState(SimObject::Drained);
768    drainEvent->process();
769}
770
771void
772TimingSimpleCPU::DcachePort::setPeer(Port *port)
773{
774    Port::setPeer(port);
775
776#if FULL_SYSTEM
777    // Update the ThreadContext's memory ports (Functional/Virtual
778    // Ports)
779    cpu->tcBase()->connectMemPorts(cpu->tcBase());
780#endif
781}
782
783bool
784TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
785{
786    if (pkt->isResponse() && !pkt->wasNacked()) {
787        // delay processing of returned data until next CPU clock edge
788        Tick next_tick = cpu->nextCycle(curTick);
789
790        if (next_tick == curTick)
791            cpu->completeDataAccess(pkt);
792        else
793            tickEvent.schedule(pkt, next_tick);
794
795        return true;
796    }
797    else if (pkt->wasNacked()) {
798        assert(cpu->_status == DcacheWaitResponse);
799        pkt->reinitNacked();
800        if (!sendTiming(pkt)) {
801            cpu->_status = DcacheRetry;
802            cpu->dcache_pkt = pkt;
803        }
804    }
805    //Snooping a Coherence Request, do nothing
806    return true;
807}
808
809void
810TimingSimpleCPU::DcachePort::DTickEvent::process()
811{
812    cpu->completeDataAccess(pkt);
813}
814
815void
816TimingSimpleCPU::DcachePort::recvRetry()
817{
818    // we shouldn't get a retry unless we have a packet that we're
819    // waiting to transmit
820    assert(cpu->dcache_pkt != NULL);
821    assert(cpu->_status == DcacheRetry);
822    PacketPtr tmp = cpu->dcache_pkt;
823    if (sendTiming(tmp)) {
824        cpu->_status = DcacheWaitResponse;
825        // memory system takes ownership of packet
826        cpu->dcache_pkt = NULL;
827    }
828}
829
830TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
831    Tick t)
832    : pkt(_pkt), cpu(_cpu)
833{
834    cpu->schedule(this, t);
835}
836
837void
838TimingSimpleCPU::IprEvent::process()
839{
840    cpu->completeDataAccess(pkt);
841}
842
843const char *
844TimingSimpleCPU::IprEvent::description() const
845{
846    return "Timing Simple CPU Delay IPR event";
847}
848
849
850void
851TimingSimpleCPU::printAddr(Addr a)
852{
853    dcachePort.printAddr(a);
854}
855
856
857////////////////////////////////////////////////////////////////////////
858//
859//  TimingSimpleCPU Simulation Object
860//
861TimingSimpleCPU *
862TimingSimpleCPUParams::create()
863{
864    numThreads = 1;
865#if !FULL_SYSTEM
866    if (workload.size() != 1)
867        panic("only one workload allowed");
868#endif
869    return new TimingSimpleCPU(this);
870}
871