timing.cc revision 5712
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, _cpuId);
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    cpu->schedule(this, t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), fetchEvent(this)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    previousTick = 0;
117    changeState(SimObject::Running);
118}
119
120
121TimingSimpleCPU::~TimingSimpleCPU()
122{
123}
124
125void
126TimingSimpleCPU::serialize(ostream &os)
127{
128    SimObject::State so_state = SimObject::getState();
129    SERIALIZE_ENUM(so_state);
130    BaseSimpleCPU::serialize(os);
131}
132
133void
134TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135{
136    SimObject::State so_state;
137    UNSERIALIZE_ENUM(so_state);
138    BaseSimpleCPU::unserialize(cp, section);
139}
140
141unsigned int
142TimingSimpleCPU::drain(Event *drain_event)
143{
144    // TimingSimpleCPU is ready to drain if it's not waiting for
145    // an access to complete.
146    if (_status == Idle || _status == Running || _status == SwitchedOut) {
147        changeState(SimObject::Drained);
148        return 0;
149    } else {
150        changeState(SimObject::Draining);
151        drainEvent = drain_event;
152        return 1;
153    }
154}
155
156void
157TimingSimpleCPU::resume()
158{
159    DPRINTF(SimpleCPU, "Resume\n");
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        if (fetchEvent.scheduled())
164           deschedule(fetchEvent);
165
166        schedule(fetchEvent, nextCycle());
167    }
168
169    changeState(SimObject::Running);
170}
171
172void
173TimingSimpleCPU::switchOut()
174{
175    assert(_status == Running || _status == Idle);
176    _status = SwitchedOut;
177    numCycles += tickToCycles(curTick - previousTick);
178
179    // If we've been scheduled to resume but are then told to switch out,
180    // we'll need to cancel it.
181    if (fetchEvent.scheduled())
182        deschedule(fetchEvent);
183}
184
185
186void
187TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
188{
189    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
190
191    // if any of this CPU's ThreadContexts are active, mark the CPU as
192    // running and schedule its tick event.
193    for (int i = 0; i < threadContexts.size(); ++i) {
194        ThreadContext *tc = threadContexts[i];
195        if (tc->status() == ThreadContext::Active && _status != Running) {
196            _status = Running;
197            break;
198        }
199    }
200
201    if (_status != Running) {
202        _status = Idle;
203    }
204    assert(threadContexts.size() == 1);
205    _cpuId = tc->cpuId();
206    previousTick = curTick;
207}
208
209
210void
211TimingSimpleCPU::activateContext(int thread_num, int delay)
212{
213    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
214
215    assert(thread_num == 0);
216    assert(thread);
217
218    assert(_status == Idle);
219
220    notIdleFraction++;
221    _status = Running;
222
223    // kick things off by initiating the fetch of the next instruction
224    schedule(fetchEvent, nextCycle(curTick + ticks(delay)));
225}
226
227
228void
229TimingSimpleCPU::suspendContext(int thread_num)
230{
231    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
232
233    assert(thread_num == 0);
234    assert(thread);
235
236    assert(_status == Running);
237
238    // just change status to Idle... if status != Running,
239    // completeInst() will not initiate fetch of next instruction.
240
241    notIdleFraction--;
242    _status = Idle;
243}
244
245
246template <class T>
247Fault
248TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
249{
250    Request *req =
251        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
252                    _cpuId, /* thread ID */ 0);
253
254    if (traceData) {
255        traceData->setAddr(req->getVaddr());
256    }
257
258   // translate to physical address
259    Fault fault = thread->translateDataReadReq(req);
260
261    // Now do the access.
262    if (fault == NoFault) {
263        PacketPtr pkt =
264            new Packet(req,
265                       (req->isLocked() ?
266                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
267                       Packet::Broadcast);
268        pkt->dataDynamic<T>(new T);
269
270        if (req->isMmapedIpr()) {
271            Tick delay;
272            delay = TheISA::handleIprRead(thread->getTC(), pkt);
273            new IprEvent(pkt, this, nextCycle(curTick + delay));
274            _status = DcacheWaitResponse;
275            dcache_pkt = NULL;
276        } else if (!dcachePort.sendTiming(pkt)) {
277            _status = DcacheRetry;
278            dcache_pkt = pkt;
279        } else {
280            _status = DcacheWaitResponse;
281            // memory system takes ownership of packet
282            dcache_pkt = NULL;
283        }
284
285        // This will need a new way to tell if it has a dcache attached.
286        if (req->isUncacheable())
287            recordEvent("Uncached Read");
288    } else {
289        delete req;
290    }
291
292    if (traceData) {
293        traceData->setData(data);
294    }
295    return fault;
296}
297
298Fault
299TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
300        int size, unsigned flags)
301{
302    Request *req =
303        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
304
305    if (traceData) {
306        traceData->setAddr(vaddr);
307    }
308
309    Fault fault = thread->translateDataWriteReq(req);
310
311    if (fault == NoFault)
312        paddr = req->getPaddr();
313
314    delete req;
315    return fault;
316}
317
318#ifndef DOXYGEN_SHOULD_SKIP_THIS
319
320template
321Fault
322TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
323
324template
325Fault
326TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
327
328template
329Fault
330TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
331
332template
333Fault
334TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
335
336template
337Fault
338TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
339
340template
341Fault
342TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
343
344#endif //DOXYGEN_SHOULD_SKIP_THIS
345
346template<>
347Fault
348TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
349{
350    return read(addr, *(uint64_t*)&data, flags);
351}
352
353template<>
354Fault
355TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
356{
357    return read(addr, *(uint32_t*)&data, flags);
358}
359
360
361template<>
362Fault
363TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
364{
365    return read(addr, (uint32_t&)data, flags);
366}
367
368
369template <class T>
370Fault
371TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
372{
373    Request *req =
374        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
375                    _cpuId, /* thread ID */ 0);
376
377    if (traceData) {
378        traceData->setAddr(req->getVaddr());
379    }
380
381    // translate to physical address
382    Fault fault = thread->translateDataWriteReq(req);
383
384    // Now do the access.
385    if (fault == NoFault) {
386        MemCmd cmd = MemCmd::WriteReq; // default
387        bool do_access = true;  // flag to suppress cache access
388
389        if (req->isLocked()) {
390            cmd = MemCmd::StoreCondReq;
391            do_access = TheISA::handleLockedWrite(thread, req);
392        } else if (req->isSwap()) {
393            cmd = MemCmd::SwapReq;
394            if (req->isCondSwap()) {
395                assert(res);
396                req->setExtraData(*res);
397            }
398        }
399
400        // Note: need to allocate dcache_pkt even if do_access is
401        // false, as it's used unconditionally to call completeAcc().
402        assert(dcache_pkt == NULL);
403        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
404        dcache_pkt->allocate();
405        dcache_pkt->set(data);
406
407        if (do_access) {
408            if (req->isMmapedIpr()) {
409                Tick delay;
410                dcache_pkt->set(htog(data));
411                delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
412                new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
413                _status = DcacheWaitResponse;
414                dcache_pkt = NULL;
415            } else if (!dcachePort.sendTiming(dcache_pkt)) {
416                _status = DcacheRetry;
417            } else {
418                _status = DcacheWaitResponse;
419                // memory system takes ownership of packet
420                dcache_pkt = NULL;
421            }
422        }
423        // This will need a new way to tell if it's hooked up to a cache or not.
424        if (req->isUncacheable())
425            recordEvent("Uncached Write");
426    } else {
427        delete req;
428    }
429
430    if (traceData) {
431        traceData->setData(data);
432    }
433
434    // If the write needs to have a fault on the access, consider calling
435    // changeStatus() and changing it to "bad addr write" or something.
436    return fault;
437}
438
439Fault
440TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
441        int size, unsigned flags)
442{
443    Request *req =
444        new Request(0, vaddr, size, flags, thread->readPC(), _cpuId, 0);
445
446    if (traceData) {
447        traceData->setAddr(vaddr);
448    }
449
450    Fault fault = thread->translateDataWriteReq(req);
451
452    if (fault == NoFault)
453        paddr = req->getPaddr();
454
455    delete req;
456    return fault;
457}
458
459
460#ifndef DOXYGEN_SHOULD_SKIP_THIS
461template
462Fault
463TimingSimpleCPU::write(Twin32_t data, Addr addr,
464                       unsigned flags, uint64_t *res);
465
466template
467Fault
468TimingSimpleCPU::write(Twin64_t data, Addr addr,
469                       unsigned flags, uint64_t *res);
470
471template
472Fault
473TimingSimpleCPU::write(uint64_t data, Addr addr,
474                       unsigned flags, uint64_t *res);
475
476template
477Fault
478TimingSimpleCPU::write(uint32_t data, Addr addr,
479                       unsigned flags, uint64_t *res);
480
481template
482Fault
483TimingSimpleCPU::write(uint16_t data, Addr addr,
484                       unsigned flags, uint64_t *res);
485
486template
487Fault
488TimingSimpleCPU::write(uint8_t data, Addr addr,
489                       unsigned flags, uint64_t *res);
490
491#endif //DOXYGEN_SHOULD_SKIP_THIS
492
493template<>
494Fault
495TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
496{
497    return write(*(uint64_t*)&data, addr, flags, res);
498}
499
500template<>
501Fault
502TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
503{
504    return write(*(uint32_t*)&data, addr, flags, res);
505}
506
507
508template<>
509Fault
510TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
511{
512    return write((uint32_t)data, addr, flags, res);
513}
514
515
516void
517TimingSimpleCPU::fetch()
518{
519    DPRINTF(SimpleCPU, "Fetch\n");
520
521    if (!curStaticInst || !curStaticInst->isDelayedCommit())
522        checkForInterrupts();
523
524    checkPcEventQueue();
525
526    bool fromRom = isRomMicroPC(thread->readMicroPC());
527
528    if (!fromRom) {
529        Request *ifetch_req = new Request();
530        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
531        Fault fault = setupFetchRequest(ifetch_req);
532
533        ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
534        ifetch_pkt->dataStatic(&inst);
535
536        if (fault == NoFault) {
537            if (!icachePort.sendTiming(ifetch_pkt)) {
538                // Need to wait for retry
539                _status = IcacheRetry;
540            } else {
541                // Need to wait for cache to respond
542                _status = IcacheWaitResponse;
543                // ownership of packet transferred to memory system
544                ifetch_pkt = NULL;
545            }
546        } else {
547            delete ifetch_req;
548            delete ifetch_pkt;
549            // fetch fault: advance directly to next instruction (fault handler)
550            advanceInst(fault);
551        }
552    } else {
553        _status = IcacheWaitResponse;
554        completeIfetch(NULL);
555    }
556
557    numCycles += tickToCycles(curTick - previousTick);
558    previousTick = curTick;
559}
560
561
562void
563TimingSimpleCPU::advanceInst(Fault fault)
564{
565    advancePC(fault);
566
567    if (_status == Running) {
568        // kick off fetch of next instruction... callback from icache
569        // response will cause that instruction to be executed,
570        // keeping the CPU running.
571        fetch();
572    }
573}
574
575
576void
577TimingSimpleCPU::completeIfetch(PacketPtr pkt)
578{
579    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
580
581    // received a response from the icache: execute the received
582    // instruction
583
584    assert(!pkt || !pkt->isError());
585    assert(_status == IcacheWaitResponse);
586
587    _status = Running;
588
589    numCycles += tickToCycles(curTick - previousTick);
590    previousTick = curTick;
591
592    if (getState() == SimObject::Draining) {
593        if (pkt) {
594            delete pkt->req;
595            delete pkt;
596        }
597
598        completeDrain();
599        return;
600    }
601
602    preExecute();
603    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
604        // load or store: just send to dcache
605        Fault fault = curStaticInst->initiateAcc(this, traceData);
606        if (_status != Running) {
607            // instruction will complete in dcache response callback
608            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
609            assert(fault == NoFault);
610        } else {
611            if (fault == NoFault) {
612                // Note that ARM can have NULL packets if the instruction gets
613                // squashed due to predication
614                // early fail on store conditional: complete now
615                assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
616
617                fault = curStaticInst->completeAcc(dcache_pkt, this,
618                                                   traceData);
619                if (dcache_pkt != NULL)
620                {
621                    delete dcache_pkt->req;
622                    delete dcache_pkt;
623                    dcache_pkt = NULL;
624                }
625
626                // keep an instruction count
627                if (fault == NoFault)
628                    countInst();
629            } else if (traceData) {
630                // If there was a fault, we shouldn't trace this instruction.
631                delete traceData;
632                traceData = NULL;
633            }
634
635            postExecute();
636            // @todo remove me after debugging with legion done
637            if (curStaticInst && (!curStaticInst->isMicroop() ||
638                        curStaticInst->isFirstMicroop()))
639                instCnt++;
640            advanceInst(fault);
641        }
642    } else {
643        // non-memory instruction: execute completely now
644        Fault fault = curStaticInst->execute(this, traceData);
645
646        // keep an instruction count
647        if (fault == NoFault)
648            countInst();
649        else if (traceData) {
650            // If there was a fault, we shouldn't trace this instruction.
651            delete traceData;
652            traceData = NULL;
653        }
654
655        postExecute();
656        // @todo remove me after debugging with legion done
657        if (curStaticInst && (!curStaticInst->isMicroop() ||
658                    curStaticInst->isFirstMicroop()))
659            instCnt++;
660        advanceInst(fault);
661    }
662
663    if (pkt) {
664        delete pkt->req;
665        delete pkt;
666    }
667}
668
669void
670TimingSimpleCPU::IcachePort::ITickEvent::process()
671{
672    cpu->completeIfetch(pkt);
673}
674
675bool
676TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
677{
678    if (pkt->isResponse() && !pkt->wasNacked()) {
679        // delay processing of returned data until next CPU clock edge
680        Tick next_tick = cpu->nextCycle(curTick);
681
682        if (next_tick == curTick)
683            cpu->completeIfetch(pkt);
684        else
685            tickEvent.schedule(pkt, next_tick);
686
687        return true;
688    }
689    else if (pkt->wasNacked()) {
690        assert(cpu->_status == IcacheWaitResponse);
691        pkt->reinitNacked();
692        if (!sendTiming(pkt)) {
693            cpu->_status = IcacheRetry;
694            cpu->ifetch_pkt = pkt;
695        }
696    }
697    //Snooping a Coherence Request, do nothing
698    return true;
699}
700
701void
702TimingSimpleCPU::IcachePort::recvRetry()
703{
704    // we shouldn't get a retry unless we have a packet that we're
705    // waiting to transmit
706    assert(cpu->ifetch_pkt != NULL);
707    assert(cpu->_status == IcacheRetry);
708    PacketPtr tmp = cpu->ifetch_pkt;
709    if (sendTiming(tmp)) {
710        cpu->_status = IcacheWaitResponse;
711        cpu->ifetch_pkt = NULL;
712    }
713}
714
715void
716TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
717{
718    // received a response from the dcache: complete the load or store
719    // instruction
720    assert(!pkt->isError());
721    assert(_status == DcacheWaitResponse);
722    _status = Running;
723
724    numCycles += tickToCycles(curTick - previousTick);
725    previousTick = curTick;
726
727    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
728
729    // keep an instruction count
730    if (fault == NoFault)
731        countInst();
732    else if (traceData) {
733        // If there was a fault, we shouldn't trace this instruction.
734        delete traceData;
735        traceData = NULL;
736    }
737
738    // the locked flag may be cleared on the response packet, so check
739    // pkt->req and not pkt to see if it was a load-locked
740    if (pkt->isRead() && pkt->req->isLocked()) {
741        TheISA::handleLockedRead(thread, pkt->req);
742    }
743
744    delete pkt->req;
745    delete pkt;
746
747    postExecute();
748
749    if (getState() == SimObject::Draining) {
750        advancePC(fault);
751        completeDrain();
752
753        return;
754    }
755
756    advanceInst(fault);
757}
758
759
760void
761TimingSimpleCPU::completeDrain()
762{
763    DPRINTF(Config, "Done draining\n");
764    changeState(SimObject::Drained);
765    drainEvent->process();
766}
767
768void
769TimingSimpleCPU::DcachePort::setPeer(Port *port)
770{
771    Port::setPeer(port);
772
773#if FULL_SYSTEM
774    // Update the ThreadContext's memory ports (Functional/Virtual
775    // Ports)
776    cpu->tcBase()->connectMemPorts(cpu->tcBase());
777#endif
778}
779
780bool
781TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
782{
783    if (pkt->isResponse() && !pkt->wasNacked()) {
784        // delay processing of returned data until next CPU clock edge
785        Tick next_tick = cpu->nextCycle(curTick);
786
787        if (next_tick == curTick)
788            cpu->completeDataAccess(pkt);
789        else
790            tickEvent.schedule(pkt, next_tick);
791
792        return true;
793    }
794    else if (pkt->wasNacked()) {
795        assert(cpu->_status == DcacheWaitResponse);
796        pkt->reinitNacked();
797        if (!sendTiming(pkt)) {
798            cpu->_status = DcacheRetry;
799            cpu->dcache_pkt = pkt;
800        }
801    }
802    //Snooping a Coherence Request, do nothing
803    return true;
804}
805
806void
807TimingSimpleCPU::DcachePort::DTickEvent::process()
808{
809    cpu->completeDataAccess(pkt);
810}
811
812void
813TimingSimpleCPU::DcachePort::recvRetry()
814{
815    // we shouldn't get a retry unless we have a packet that we're
816    // waiting to transmit
817    assert(cpu->dcache_pkt != NULL);
818    assert(cpu->_status == DcacheRetry);
819    PacketPtr tmp = cpu->dcache_pkt;
820    if (sendTiming(tmp)) {
821        cpu->_status = DcacheWaitResponse;
822        // memory system takes ownership of packet
823        cpu->dcache_pkt = NULL;
824    }
825}
826
827TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
828    Tick t)
829    : pkt(_pkt), cpu(_cpu)
830{
831    cpu->schedule(this, t);
832}
833
834void
835TimingSimpleCPU::IprEvent::process()
836{
837    cpu->completeDataAccess(pkt);
838}
839
840const char *
841TimingSimpleCPU::IprEvent::description() const
842{
843    return "Timing Simple CPU Delay IPR event";
844}
845
846
847void
848TimingSimpleCPU::printAddr(Addr a)
849{
850    dcachePort.printAddr(a);
851}
852
853
854////////////////////////////////////////////////////////////////////////
855//
856//  TimingSimpleCPU Simulation Object
857//
858TimingSimpleCPU *
859TimingSimpleCPUParams::create()
860{
861    numThreads = 1;
862#if !FULL_SYSTEM
863    if (workload.size() != 1)
864        panic("only one workload allowed");
865#endif
866    return new TimingSimpleCPU(this);
867}
868