timing.cc revision 5335:69d45f5f21a2
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60    cpuId = tc->readCpuId();
61#if FULL_SYSTEM
62    for (int i = 0; i < threadContexts.size(); ++i) {
63        ThreadContext *tc = threadContexts[i];
64
65        // initialize CPU, including PC
66        TheISA::initCPU(tc, cpuId);
67    }
68#endif
69}
70
71Tick
72TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
75    return curTick;
76}
77
78void
79TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
80{
81    //No internal storage to update, jusst return
82    return;
83}
84
85void
86TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
87{
88    if (status == RangeChange) {
89        if (!snoopRangeSent) {
90            snoopRangeSent = true;
91            sendStatusChange(Port::RangeChange);
92        }
93        return;
94    }
95
96    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
97}
98
99
100void
101TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
102{
103    pkt = _pkt;
104    Event::schedule(t);
105}
106
107TimingSimpleCPU::TimingSimpleCPU(Params *p)
108    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
109{
110    _status = Idle;
111
112    icachePort.snoopRangeSent = false;
113    dcachePort.snoopRangeSent = false;
114
115    ifetch_pkt = dcache_pkt = NULL;
116    drainEvent = NULL;
117    fetchEvent = NULL;
118    previousTick = 0;
119    changeState(SimObject::Running);
120}
121
122
123TimingSimpleCPU::~TimingSimpleCPU()
124{
125}
126
127void
128TimingSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    BaseSimpleCPU::serialize(os);
133}
134
135void
136TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
137{
138    SimObject::State so_state;
139    UNSERIALIZE_ENUM(so_state);
140    BaseSimpleCPU::unserialize(cp, section);
141}
142
143unsigned int
144TimingSimpleCPU::drain(Event *drain_event)
145{
146    // TimingSimpleCPU is ready to drain if it's not waiting for
147    // an access to complete.
148    if (status() == Idle || status() == Running || status() == SwitchedOut) {
149        changeState(SimObject::Drained);
150        return 0;
151    } else {
152        changeState(SimObject::Draining);
153        drainEvent = drain_event;
154        return 1;
155    }
156}
157
158void
159TimingSimpleCPU::resume()
160{
161    DPRINTF(SimpleCPU, "Resume\n");
162    if (_status != SwitchedOut && _status != Idle) {
163        assert(system->getMemoryMode() == Enums::timing);
164
165        // Delete the old event if it existed.
166        if (fetchEvent) {
167            if (fetchEvent->scheduled())
168                fetchEvent->deschedule();
169
170            delete fetchEvent;
171        }
172
173        fetchEvent = new FetchEvent(this, nextCycle());
174    }
175
176    changeState(SimObject::Running);
177}
178
179void
180TimingSimpleCPU::switchOut()
181{
182    assert(status() == Running || status() == Idle);
183    _status = SwitchedOut;
184    numCycles += tickToCycles(curTick - previousTick);
185
186    // If we've been scheduled to resume but are then told to switch out,
187    // we'll need to cancel it.
188    if (fetchEvent && fetchEvent->scheduled())
189        fetchEvent->deschedule();
190}
191
192
193void
194TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
195{
196    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
197
198    // if any of this CPU's ThreadContexts are active, mark the CPU as
199    // running and schedule its tick event.
200    for (int i = 0; i < threadContexts.size(); ++i) {
201        ThreadContext *tc = threadContexts[i];
202        if (tc->status() == ThreadContext::Active && _status != Running) {
203            _status = Running;
204            break;
205        }
206    }
207
208    if (_status != Running) {
209        _status = Idle;
210    }
211    assert(threadContexts.size() == 1);
212    cpuId = tc->readCpuId();
213    previousTick = curTick;
214}
215
216
217void
218TimingSimpleCPU::activateContext(int thread_num, int delay)
219{
220    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
221
222    assert(thread_num == 0);
223    assert(thread);
224
225    assert(_status == Idle);
226
227    notIdleFraction++;
228    _status = Running;
229
230    // kick things off by initiating the fetch of the next instruction
231    fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
232}
233
234
235void
236TimingSimpleCPU::suspendContext(int thread_num)
237{
238    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
239
240    assert(thread_num == 0);
241    assert(thread);
242
243    assert(_status == Running);
244
245    // just change status to Idle... if status != Running,
246    // completeInst() will not initiate fetch of next instruction.
247
248    notIdleFraction--;
249    _status = Idle;
250}
251
252
253template <class T>
254Fault
255TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
256{
257    Request *req =
258        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
259                    cpuId, /* thread ID */ 0);
260
261    if (traceData) {
262        traceData->setAddr(req->getVaddr());
263    }
264
265   // translate to physical address
266    Fault fault = thread->translateDataReadReq(req);
267
268    // Now do the access.
269    if (fault == NoFault) {
270        PacketPtr pkt =
271            new Packet(req,
272                       (req->isLocked() ?
273                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
274                       Packet::Broadcast);
275        pkt->dataDynamic<T>(new T);
276
277        if (req->isMmapedIpr()) {
278            Tick delay;
279            delay = TheISA::handleIprRead(thread->getTC(), pkt);
280            new IprEvent(pkt, this, nextCycle(curTick + delay));
281            _status = DcacheWaitResponse;
282            dcache_pkt = NULL;
283        } else if (!dcachePort.sendTiming(pkt)) {
284            _status = DcacheRetry;
285            dcache_pkt = pkt;
286        } else {
287            _status = DcacheWaitResponse;
288            // memory system takes ownership of packet
289            dcache_pkt = NULL;
290        }
291
292        // This will need a new way to tell if it has a dcache attached.
293        if (req->isUncacheable())
294            recordEvent("Uncached Read");
295    } else {
296        delete req;
297    }
298
299    return fault;
300}
301
302Fault
303TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
304        int size, unsigned flags)
305{
306    Request *req =
307        new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
308
309    if (traceData) {
310        traceData->setAddr(vaddr);
311    }
312
313    Fault fault = thread->translateDataWriteReq(req);
314
315    if (fault == NoFault)
316        paddr = req->getPaddr();
317
318    delete req;
319    return fault;
320}
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323
324template
325Fault
326TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
327
328template
329Fault
330TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
331
332template
333Fault
334TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
335
336template
337Fault
338TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
339
340template
341Fault
342TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
343
344template
345Fault
346TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
347
348#endif //DOXYGEN_SHOULD_SKIP_THIS
349
350template<>
351Fault
352TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
353{
354    return read(addr, *(uint64_t*)&data, flags);
355}
356
357template<>
358Fault
359TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
360{
361    return read(addr, *(uint32_t*)&data, flags);
362}
363
364
365template<>
366Fault
367TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
368{
369    return read(addr, (uint32_t&)data, flags);
370}
371
372
373template <class T>
374Fault
375TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
376{
377    Request *req =
378        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
379                    cpuId, /* thread ID */ 0);
380
381    if (traceData) {
382        traceData->setAddr(req->getVaddr());
383    }
384
385    // translate to physical address
386    Fault fault = thread->translateDataWriteReq(req);
387
388    // Now do the access.
389    if (fault == NoFault) {
390        MemCmd cmd = MemCmd::WriteReq; // default
391        bool do_access = true;  // flag to suppress cache access
392
393        if (req->isLocked()) {
394            cmd = MemCmd::StoreCondReq;
395            do_access = TheISA::handleLockedWrite(thread, req);
396        } else if (req->isSwap()) {
397            cmd = MemCmd::SwapReq;
398            if (req->isCondSwap()) {
399                assert(res);
400                req->setExtraData(*res);
401            }
402        }
403
404        // Note: need to allocate dcache_pkt even if do_access is
405        // false, as it's used unconditionally to call completeAcc().
406        assert(dcache_pkt == NULL);
407        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
408        dcache_pkt->allocate();
409        dcache_pkt->set(data);
410
411        if (do_access) {
412            if (req->isMmapedIpr()) {
413                Tick delay;
414                dcache_pkt->set(htog(data));
415                delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
416                new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
417                _status = DcacheWaitResponse;
418                dcache_pkt = NULL;
419            } else if (!dcachePort.sendTiming(dcache_pkt)) {
420                _status = DcacheRetry;
421            } else {
422                _status = DcacheWaitResponse;
423                // memory system takes ownership of packet
424                dcache_pkt = NULL;
425            }
426        }
427        // This will need a new way to tell if it's hooked up to a cache or not.
428        if (req->isUncacheable())
429            recordEvent("Uncached Write");
430    } else {
431        delete req;
432    }
433
434
435    // If the write needs to have a fault on the access, consider calling
436    // changeStatus() and changing it to "bad addr write" or something.
437    return fault;
438}
439
440Fault
441TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
442        int size, unsigned flags)
443{
444    Request *req =
445        new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
446
447    if (traceData) {
448        traceData->setAddr(vaddr);
449    }
450
451    Fault fault = thread->translateDataWriteReq(req);
452
453    if (fault == NoFault)
454        paddr = req->getPaddr();
455
456    delete req;
457    return fault;
458}
459
460
461#ifndef DOXYGEN_SHOULD_SKIP_THIS
462template
463Fault
464TimingSimpleCPU::write(Twin32_t data, Addr addr,
465                       unsigned flags, uint64_t *res);
466
467template
468Fault
469TimingSimpleCPU::write(Twin64_t data, Addr addr,
470                       unsigned flags, uint64_t *res);
471
472template
473Fault
474TimingSimpleCPU::write(uint64_t data, Addr addr,
475                       unsigned flags, uint64_t *res);
476
477template
478Fault
479TimingSimpleCPU::write(uint32_t data, Addr addr,
480                       unsigned flags, uint64_t *res);
481
482template
483Fault
484TimingSimpleCPU::write(uint16_t data, Addr addr,
485                       unsigned flags, uint64_t *res);
486
487template
488Fault
489TimingSimpleCPU::write(uint8_t data, Addr addr,
490                       unsigned flags, uint64_t *res);
491
492#endif //DOXYGEN_SHOULD_SKIP_THIS
493
494template<>
495Fault
496TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
497{
498    return write(*(uint64_t*)&data, addr, flags, res);
499}
500
501template<>
502Fault
503TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
504{
505    return write(*(uint32_t*)&data, addr, flags, res);
506}
507
508
509template<>
510Fault
511TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
512{
513    return write((uint32_t)data, addr, flags, res);
514}
515
516
517void
518TimingSimpleCPU::fetch()
519{
520    DPRINTF(SimpleCPU, "Fetch\n");
521
522    if (!curStaticInst || !curStaticInst->isDelayedCommit())
523        checkForInterrupts();
524
525    Request *ifetch_req = new Request();
526    ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
527    Fault fault = setupFetchRequest(ifetch_req);
528
529    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
530    ifetch_pkt->dataStatic(&inst);
531
532    if (fault == NoFault) {
533        if (!icachePort.sendTiming(ifetch_pkt)) {
534            // Need to wait for retry
535            _status = IcacheRetry;
536        } else {
537            // Need to wait for cache to respond
538            _status = IcacheWaitResponse;
539            // ownership of packet transferred to memory system
540            ifetch_pkt = NULL;
541        }
542    } else {
543        delete ifetch_req;
544        delete ifetch_pkt;
545        // fetch fault: advance directly to next instruction (fault handler)
546        advanceInst(fault);
547    }
548
549    numCycles += tickToCycles(curTick - previousTick);
550    previousTick = curTick;
551}
552
553
554void
555TimingSimpleCPU::advanceInst(Fault fault)
556{
557    advancePC(fault);
558
559    if (_status == Running) {
560        // kick off fetch of next instruction... callback from icache
561        // response will cause that instruction to be executed,
562        // keeping the CPU running.
563        fetch();
564    }
565}
566
567
568void
569TimingSimpleCPU::completeIfetch(PacketPtr pkt)
570{
571    DPRINTF(SimpleCPU, "Complete ICache Fetch\n");
572
573    // received a response from the icache: execute the received
574    // instruction
575    assert(!pkt->isError());
576    assert(_status == IcacheWaitResponse);
577
578    _status = Running;
579
580    numCycles += tickToCycles(curTick - previousTick);
581    previousTick = curTick;
582
583    if (getState() == SimObject::Draining) {
584        delete pkt->req;
585        delete pkt;
586
587        completeDrain();
588        return;
589    }
590
591    preExecute();
592    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
593        // load or store: just send to dcache
594        Fault fault = curStaticInst->initiateAcc(this, traceData);
595        if (_status != Running) {
596            // instruction will complete in dcache response callback
597            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
598            assert(fault == NoFault);
599        } else {
600            if (fault == NoFault) {
601                // Note that ARM can have NULL packets if the instruction gets
602                // squashed due to predication
603                // early fail on store conditional: complete now
604                assert(dcache_pkt != NULL || THE_ISA == ARM_ISA);
605
606                fault = curStaticInst->completeAcc(dcache_pkt, this,
607                                                   traceData);
608                if (dcache_pkt != NULL)
609                {
610                    delete dcache_pkt->req;
611                    delete dcache_pkt;
612                    dcache_pkt = NULL;
613                }
614
615                // keep an instruction count
616                if (fault == NoFault)
617                    countInst();
618            } else if (traceData) {
619                // If there was a fault, we shouldn't trace this instruction.
620                delete traceData;
621                traceData = NULL;
622            }
623
624            postExecute();
625            // @todo remove me after debugging with legion done
626            if (curStaticInst && (!curStaticInst->isMicroop() ||
627                        curStaticInst->isFirstMicroop()))
628                instCnt++;
629            advanceInst(fault);
630        }
631    } else {
632        // non-memory instruction: execute completely now
633        Fault fault = curStaticInst->execute(this, traceData);
634
635        // keep an instruction count
636        if (fault == NoFault)
637            countInst();
638        else if (traceData) {
639            // If there was a fault, we shouldn't trace this instruction.
640            delete traceData;
641            traceData = NULL;
642        }
643
644        postExecute();
645        // @todo remove me after debugging with legion done
646        if (curStaticInst && (!curStaticInst->isMicroop() ||
647                    curStaticInst->isFirstMicroop()))
648            instCnt++;
649        advanceInst(fault);
650    }
651
652    delete pkt->req;
653    delete pkt;
654}
655
656void
657TimingSimpleCPU::IcachePort::ITickEvent::process()
658{
659    cpu->completeIfetch(pkt);
660}
661
662bool
663TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
664{
665    if (pkt->isResponse() && !pkt->wasNacked()) {
666        // delay processing of returned data until next CPU clock edge
667        Tick next_tick = cpu->nextCycle(curTick);
668
669        if (next_tick == curTick)
670            cpu->completeIfetch(pkt);
671        else
672            tickEvent.schedule(pkt, next_tick);
673
674        return true;
675    }
676    else if (pkt->wasNacked()) {
677        assert(cpu->_status == IcacheWaitResponse);
678        pkt->reinitNacked();
679        if (!sendTiming(pkt)) {
680            cpu->_status = IcacheRetry;
681            cpu->ifetch_pkt = pkt;
682        }
683    }
684    //Snooping a Coherence Request, do nothing
685    return true;
686}
687
688void
689TimingSimpleCPU::IcachePort::recvRetry()
690{
691    // we shouldn't get a retry unless we have a packet that we're
692    // waiting to transmit
693    assert(cpu->ifetch_pkt != NULL);
694    assert(cpu->_status == IcacheRetry);
695    PacketPtr tmp = cpu->ifetch_pkt;
696    if (sendTiming(tmp)) {
697        cpu->_status = IcacheWaitResponse;
698        cpu->ifetch_pkt = NULL;
699    }
700}
701
702void
703TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
704{
705    // received a response from the dcache: complete the load or store
706    // instruction
707    assert(!pkt->isError());
708    assert(_status == DcacheWaitResponse);
709    _status = Running;
710
711    numCycles += tickToCycles(curTick - previousTick);
712    previousTick = curTick;
713
714    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
715
716    // keep an instruction count
717    if (fault == NoFault)
718        countInst();
719    else if (traceData) {
720        // If there was a fault, we shouldn't trace this instruction.
721        delete traceData;
722        traceData = NULL;
723    }
724
725    if (pkt->isRead() && pkt->isLocked()) {
726        TheISA::handleLockedRead(thread, pkt->req);
727    }
728
729    delete pkt->req;
730    delete pkt;
731
732    postExecute();
733
734    if (getState() == SimObject::Draining) {
735        advancePC(fault);
736        completeDrain();
737
738        return;
739    }
740
741    advanceInst(fault);
742}
743
744
745void
746TimingSimpleCPU::completeDrain()
747{
748    DPRINTF(Config, "Done draining\n");
749    changeState(SimObject::Drained);
750    drainEvent->process();
751}
752
753void
754TimingSimpleCPU::DcachePort::setPeer(Port *port)
755{
756    Port::setPeer(port);
757
758#if FULL_SYSTEM
759    // Update the ThreadContext's memory ports (Functional/Virtual
760    // Ports)
761    cpu->tcBase()->connectMemPorts();
762#endif
763}
764
765bool
766TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
767{
768    if (pkt->isResponse() && !pkt->wasNacked()) {
769        // delay processing of returned data until next CPU clock edge
770        Tick next_tick = cpu->nextCycle(curTick);
771
772        if (next_tick == curTick)
773            cpu->completeDataAccess(pkt);
774        else
775            tickEvent.schedule(pkt, next_tick);
776
777        return true;
778    }
779    else if (pkt->wasNacked()) {
780        assert(cpu->_status == DcacheWaitResponse);
781        pkt->reinitNacked();
782        if (!sendTiming(pkt)) {
783            cpu->_status = DcacheRetry;
784            cpu->dcache_pkt = pkt;
785        }
786    }
787    //Snooping a Coherence Request, do nothing
788    return true;
789}
790
791void
792TimingSimpleCPU::DcachePort::DTickEvent::process()
793{
794    cpu->completeDataAccess(pkt);
795}
796
797void
798TimingSimpleCPU::DcachePort::recvRetry()
799{
800    // we shouldn't get a retry unless we have a packet that we're
801    // waiting to transmit
802    assert(cpu->dcache_pkt != NULL);
803    assert(cpu->_status == DcacheRetry);
804    PacketPtr tmp = cpu->dcache_pkt;
805    if (sendTiming(tmp)) {
806        cpu->_status = DcacheWaitResponse;
807        // memory system takes ownership of packet
808        cpu->dcache_pkt = NULL;
809    }
810}
811
812TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
813    : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
814{
815    schedule(t);
816}
817
818void
819TimingSimpleCPU::IprEvent::process()
820{
821    cpu->completeDataAccess(pkt);
822}
823
824const char *
825TimingSimpleCPU::IprEvent::description()
826{
827    return "Timing Simple CPU Delay IPR event";
828}
829
830
831void
832TimingSimpleCPU::printAddr(Addr a)
833{
834    dcachePort.printAddr(a);
835}
836
837
838////////////////////////////////////////////////////////////////////////
839//
840//  TimingSimpleCPU Simulation Object
841//
842TimingSimpleCPU *
843TimingSimpleCPUParams::create()
844{
845    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
846    params->name = name;
847    params->numberOfThreads = 1;
848    params->max_insts_any_thread = max_insts_any_thread;
849    params->max_insts_all_threads = max_insts_all_threads;
850    params->max_loads_any_thread = max_loads_any_thread;
851    params->max_loads_all_threads = max_loads_all_threads;
852    params->progress_interval = progress_interval;
853    params->deferRegistration = defer_registration;
854    params->clock = clock;
855    params->phase = phase;
856    params->functionTrace = function_trace;
857    params->functionTraceStart = function_trace_start;
858    params->system = system;
859    params->cpu_id = cpu_id;
860    params->tracer = tracer;
861
862    params->itb = itb;
863    params->dtb = dtb;
864#if FULL_SYSTEM
865    params->profile = profile;
866    params->do_quiesce = do_quiesce;
867    params->do_checkpoint_insts = do_checkpoint_insts;
868    params->do_statistics_insts = do_statistics_insts;
869#else
870    if (workload.size() != 1)
871        panic("only one workload allowed");
872    params->process = workload[0];
873#endif
874
875    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
876    return cpu;
877}
878