timing.cc revision 5177
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/timing.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/TimingSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45Port *
46TimingSimpleCPU::getPort(const std::string &if_name, int idx)
47{
48    if (if_name == "dcache_port")
49        return &dcachePort;
50    else if (if_name == "icache_port")
51        return &icachePort;
52    else
53        panic("No Such Port\n");
54}
55
56void
57TimingSimpleCPU::init()
58{
59    BaseCPU::init();
60#if FULL_SYSTEM
61    for (int i = 0; i < threadContexts.size(); ++i) {
62        ThreadContext *tc = threadContexts[i];
63
64        // initialize CPU, including PC
65        TheISA::initCPU(tc, tc->readCpuId());
66    }
67#endif
68}
69
70Tick
71TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
72{
73    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
74    return curTick;
75}
76
77void
78TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
79{
80    //No internal storage to update, jusst return
81    return;
82}
83
84void
85TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
86{
87    if (status == RangeChange) {
88        if (!snoopRangeSent) {
89            snoopRangeSent = true;
90            sendStatusChange(Port::RangeChange);
91        }
92        return;
93    }
94
95    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
96}
97
98
99void
100TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
101{
102    pkt = _pkt;
103    Event::schedule(t);
104}
105
106TimingSimpleCPU::TimingSimpleCPU(Params *p)
107    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    fetchEvent = NULL;
117    previousTick = 0;
118    changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129    SimObject::State so_state = SimObject::getState();
130    SERIALIZE_ENUM(so_state);
131    BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145    // TimingSimpleCPU is ready to drain if it's not waiting for
146    // an access to complete.
147    if (status() == Idle || status() == Running || status() == SwitchedOut) {
148        changeState(SimObject::Drained);
149        return 0;
150    } else {
151        changeState(SimObject::Draining);
152        drainEvent = drain_event;
153        return 1;
154    }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        // Delete the old event if it existed.
164        if (fetchEvent) {
165            if (fetchEvent->scheduled())
166                fetchEvent->deschedule();
167
168            delete fetchEvent;
169        }
170
171        fetchEvent = new FetchEvent(this, nextCycle());
172    }
173
174    changeState(SimObject::Running);
175}
176
177void
178TimingSimpleCPU::switchOut()
179{
180    assert(status() == Running || status() == Idle);
181    _status = SwitchedOut;
182    numCycles += tickToCycles(curTick - previousTick);
183
184    // If we've been scheduled to resume but are then told to switch out,
185    // we'll need to cancel it.
186    if (fetchEvent && fetchEvent->scheduled())
187        fetchEvent->deschedule();
188}
189
190
191void
192TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
193{
194    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
195
196    // if any of this CPU's ThreadContexts are active, mark the CPU as
197    // running and schedule its tick event.
198    for (int i = 0; i < threadContexts.size(); ++i) {
199        ThreadContext *tc = threadContexts[i];
200        if (tc->status() == ThreadContext::Active && _status != Running) {
201            _status = Running;
202            break;
203        }
204    }
205
206    if (_status != Running) {
207        _status = Idle;
208    }
209    assert(threadContexts.size() == 1);
210    cpuId = tc->readCpuId();
211    previousTick = curTick;
212}
213
214
215void
216TimingSimpleCPU::activateContext(int thread_num, int delay)
217{
218    assert(thread_num == 0);
219    assert(thread);
220
221    assert(_status == Idle);
222
223    notIdleFraction++;
224    _status = Running;
225
226    // kick things off by initiating the fetch of the next instruction
227    fetchEvent = new FetchEvent(this, nextCycle(curTick + ticks(delay)));
228}
229
230
231void
232TimingSimpleCPU::suspendContext(int thread_num)
233{
234    assert(thread_num == 0);
235    assert(thread);
236
237    assert(_status == Running);
238
239    // just change status to Idle... if status != Running,
240    // completeInst() will not initiate fetch of next instruction.
241
242    notIdleFraction--;
243    _status = Idle;
244}
245
246
247template <class T>
248Fault
249TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
250{
251    Request *req =
252        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
253                    cpuId, /* thread ID */ 0);
254
255    if (traceData) {
256        traceData->setAddr(req->getVaddr());
257    }
258
259   // translate to physical address
260    Fault fault = thread->translateDataReadReq(req);
261
262    // Now do the access.
263    if (fault == NoFault) {
264        PacketPtr pkt =
265            new Packet(req,
266                       (req->isLocked() ?
267                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
268                       Packet::Broadcast);
269        pkt->dataDynamic<T>(new T);
270
271        if (req->isMmapedIpr()) {
272            Tick delay;
273            delay = TheISA::handleIprRead(thread->getTC(), pkt);
274            new IprEvent(pkt, this, nextCycle(curTick + delay));
275            _status = DcacheWaitResponse;
276            dcache_pkt = NULL;
277        } else if (!dcachePort.sendTiming(pkt)) {
278            _status = DcacheRetry;
279            dcache_pkt = pkt;
280        } else {
281            _status = DcacheWaitResponse;
282            // memory system takes ownership of packet
283            dcache_pkt = NULL;
284        }
285
286        // This will need a new way to tell if it has a dcache attached.
287        if (req->isUncacheable())
288            recordEvent("Uncached Read");
289    } else {
290        delete req;
291    }
292
293    return fault;
294}
295
296Fault
297TimingSimpleCPU::translateDataReadAddr(Addr vaddr, Addr &paddr,
298        int size, unsigned flags)
299{
300    Request *req =
301        new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
302
303    if (traceData) {
304        traceData->setAddr(vaddr);
305    }
306
307    Fault fault = thread->translateDataWriteReq(req);
308
309    if (fault == NoFault)
310        paddr = req->getPaddr();
311
312    delete req;
313    return fault;
314}
315
316#ifndef DOXYGEN_SHOULD_SKIP_THIS
317
318template
319Fault
320TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
321
322template
323Fault
324TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
325
326template
327Fault
328TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
329
330template
331Fault
332TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
333
334template
335Fault
336TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
337
338template
339Fault
340TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
341
342#endif //DOXYGEN_SHOULD_SKIP_THIS
343
344template<>
345Fault
346TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
347{
348    return read(addr, *(uint64_t*)&data, flags);
349}
350
351template<>
352Fault
353TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
354{
355    return read(addr, *(uint32_t*)&data, flags);
356}
357
358
359template<>
360Fault
361TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
362{
363    return read(addr, (uint32_t&)data, flags);
364}
365
366
367template <class T>
368Fault
369TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
370{
371    Request *req =
372        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
373                    cpuId, /* thread ID */ 0);
374
375    if (traceData) {
376        traceData->setAddr(req->getVaddr());
377    }
378
379    // translate to physical address
380    Fault fault = thread->translateDataWriteReq(req);
381
382    // Now do the access.
383    if (fault == NoFault) {
384        MemCmd cmd = MemCmd::WriteReq; // default
385        bool do_access = true;  // flag to suppress cache access
386
387        if (req->isLocked()) {
388            cmd = MemCmd::StoreCondReq;
389            do_access = TheISA::handleLockedWrite(thread, req);
390        } else if (req->isSwap()) {
391            cmd = MemCmd::SwapReq;
392            if (req->isCondSwap()) {
393                assert(res);
394                req->setExtraData(*res);
395            }
396        }
397
398        // Note: need to allocate dcache_pkt even if do_access is
399        // false, as it's used unconditionally to call completeAcc().
400        assert(dcache_pkt == NULL);
401        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
402        dcache_pkt->allocate();
403        dcache_pkt->set(data);
404
405        if (do_access) {
406            if (req->isMmapedIpr()) {
407                Tick delay;
408                dcache_pkt->set(htog(data));
409                delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
410                new IprEvent(dcache_pkt, this, nextCycle(curTick + delay));
411                _status = DcacheWaitResponse;
412                dcache_pkt = NULL;
413            } else if (!dcachePort.sendTiming(dcache_pkt)) {
414                _status = DcacheRetry;
415            } else {
416                _status = DcacheWaitResponse;
417                // memory system takes ownership of packet
418                dcache_pkt = NULL;
419            }
420        }
421        // This will need a new way to tell if it's hooked up to a cache or not.
422        if (req->isUncacheable())
423            recordEvent("Uncached Write");
424    } else {
425        delete req;
426    }
427
428
429    // If the write needs to have a fault on the access, consider calling
430    // changeStatus() and changing it to "bad addr write" or something.
431    return fault;
432}
433
434Fault
435TimingSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
436        int size, unsigned flags)
437{
438    Request *req =
439        new Request(0, vaddr, size, flags, thread->readPC(), cpuId, 0);
440
441    if (traceData) {
442        traceData->setAddr(vaddr);
443    }
444
445    Fault fault = thread->translateDataWriteReq(req);
446
447    if (fault == NoFault)
448        paddr = req->getPaddr();
449
450    delete req;
451    return fault;
452}
453
454
455#ifndef DOXYGEN_SHOULD_SKIP_THIS
456template
457Fault
458TimingSimpleCPU::write(Twin32_t data, Addr addr,
459                       unsigned flags, uint64_t *res);
460
461template
462Fault
463TimingSimpleCPU::write(Twin64_t data, Addr addr,
464                       unsigned flags, uint64_t *res);
465
466template
467Fault
468TimingSimpleCPU::write(uint64_t data, Addr addr,
469                       unsigned flags, uint64_t *res);
470
471template
472Fault
473TimingSimpleCPU::write(uint32_t data, Addr addr,
474                       unsigned flags, uint64_t *res);
475
476template
477Fault
478TimingSimpleCPU::write(uint16_t data, Addr addr,
479                       unsigned flags, uint64_t *res);
480
481template
482Fault
483TimingSimpleCPU::write(uint8_t data, Addr addr,
484                       unsigned flags, uint64_t *res);
485
486#endif //DOXYGEN_SHOULD_SKIP_THIS
487
488template<>
489Fault
490TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
491{
492    return write(*(uint64_t*)&data, addr, flags, res);
493}
494
495template<>
496Fault
497TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
498{
499    return write(*(uint32_t*)&data, addr, flags, res);
500}
501
502
503template<>
504Fault
505TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
506{
507    return write((uint32_t)data, addr, flags, res);
508}
509
510
511void
512TimingSimpleCPU::fetch()
513{
514    if (!curStaticInst || !curStaticInst->isDelayedCommit())
515        checkForInterrupts();
516
517    Request *ifetch_req = new Request();
518    ifetch_req->setThreadContext(cpuId, /* thread ID */ 0);
519    Fault fault = setupFetchRequest(ifetch_req);
520
521    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
522    ifetch_pkt->dataStatic(&inst);
523
524    if (fault == NoFault) {
525        if (!icachePort.sendTiming(ifetch_pkt)) {
526            // Need to wait for retry
527            _status = IcacheRetry;
528        } else {
529            // Need to wait for cache to respond
530            _status = IcacheWaitResponse;
531            // ownership of packet transferred to memory system
532            ifetch_pkt = NULL;
533        }
534    } else {
535        delete ifetch_req;
536        delete ifetch_pkt;
537        // fetch fault: advance directly to next instruction (fault handler)
538        advanceInst(fault);
539    }
540
541    numCycles += tickToCycles(curTick - previousTick);
542    previousTick = curTick;
543}
544
545
546void
547TimingSimpleCPU::advanceInst(Fault fault)
548{
549    advancePC(fault);
550
551    if (_status == Running) {
552        // kick off fetch of next instruction... callback from icache
553        // response will cause that instruction to be executed,
554        // keeping the CPU running.
555        fetch();
556    }
557}
558
559
560void
561TimingSimpleCPU::completeIfetch(PacketPtr pkt)
562{
563    // received a response from the icache: execute the received
564    // instruction
565    assert(!pkt->isError());
566    assert(_status == IcacheWaitResponse);
567
568    _status = Running;
569
570    numCycles += tickToCycles(curTick - previousTick);
571    previousTick = curTick;
572
573    if (getState() == SimObject::Draining) {
574        delete pkt->req;
575        delete pkt;
576
577        completeDrain();
578        return;
579    }
580
581    preExecute();
582    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
583        // load or store: just send to dcache
584        Fault fault = curStaticInst->initiateAcc(this, traceData);
585        if (_status != Running) {
586            // instruction will complete in dcache response callback
587            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
588            assert(fault == NoFault);
589        } else {
590            if (fault == NoFault) {
591                // early fail on store conditional: complete now
592                assert(dcache_pkt != NULL);
593                fault = curStaticInst->completeAcc(dcache_pkt, this,
594                                                   traceData);
595                delete dcache_pkt->req;
596                delete dcache_pkt;
597                dcache_pkt = NULL;
598
599                // keep an instruction count
600                if (fault == NoFault)
601                    countInst();
602            } else if (traceData) {
603                // If there was a fault, we shouldn't trace this instruction.
604                delete traceData;
605                traceData = NULL;
606            }
607
608            postExecute();
609            // @todo remove me after debugging with legion done
610            if (curStaticInst && (!curStaticInst->isMicroop() ||
611                        curStaticInst->isFirstMicroop()))
612                instCnt++;
613            advanceInst(fault);
614        }
615    } else {
616        // non-memory instruction: execute completely now
617        Fault fault = curStaticInst->execute(this, traceData);
618
619        // keep an instruction count
620        if (fault == NoFault)
621            countInst();
622        else if (traceData) {
623            // If there was a fault, we shouldn't trace this instruction.
624            delete traceData;
625            traceData = NULL;
626        }
627
628        postExecute();
629        // @todo remove me after debugging with legion done
630        if (curStaticInst && (!curStaticInst->isMicroop() ||
631                    curStaticInst->isFirstMicroop()))
632            instCnt++;
633        advanceInst(fault);
634    }
635
636    delete pkt->req;
637    delete pkt;
638}
639
640void
641TimingSimpleCPU::IcachePort::ITickEvent::process()
642{
643    cpu->completeIfetch(pkt);
644}
645
646bool
647TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
648{
649    if (pkt->isResponse() && !pkt->wasNacked()) {
650        // delay processing of returned data until next CPU clock edge
651        Tick next_tick = cpu->nextCycle(curTick);
652
653        if (next_tick == curTick)
654            cpu->completeIfetch(pkt);
655        else
656            tickEvent.schedule(pkt, next_tick);
657
658        return true;
659    }
660    else if (pkt->wasNacked()) {
661        assert(cpu->_status == IcacheWaitResponse);
662        pkt->reinitNacked();
663        if (!sendTiming(pkt)) {
664            cpu->_status = IcacheRetry;
665            cpu->ifetch_pkt = pkt;
666        }
667    }
668    //Snooping a Coherence Request, do nothing
669    return true;
670}
671
672void
673TimingSimpleCPU::IcachePort::recvRetry()
674{
675    // we shouldn't get a retry unless we have a packet that we're
676    // waiting to transmit
677    assert(cpu->ifetch_pkt != NULL);
678    assert(cpu->_status == IcacheRetry);
679    PacketPtr tmp = cpu->ifetch_pkt;
680    if (sendTiming(tmp)) {
681        cpu->_status = IcacheWaitResponse;
682        cpu->ifetch_pkt = NULL;
683    }
684}
685
686void
687TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
688{
689    // received a response from the dcache: complete the load or store
690    // instruction
691    assert(!pkt->isError());
692    assert(_status == DcacheWaitResponse);
693    _status = Running;
694
695    numCycles += tickToCycles(curTick - previousTick);
696    previousTick = curTick;
697
698    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
699
700    // keep an instruction count
701    if (fault == NoFault)
702        countInst();
703    else if (traceData) {
704        // If there was a fault, we shouldn't trace this instruction.
705        delete traceData;
706        traceData = NULL;
707    }
708
709    if (pkt->isRead() && pkt->isLocked()) {
710        TheISA::handleLockedRead(thread, pkt->req);
711    }
712
713    delete pkt->req;
714    delete pkt;
715
716    postExecute();
717
718    if (getState() == SimObject::Draining) {
719        advancePC(fault);
720        completeDrain();
721
722        return;
723    }
724
725    advanceInst(fault);
726}
727
728
729void
730TimingSimpleCPU::completeDrain()
731{
732    DPRINTF(Config, "Done draining\n");
733    changeState(SimObject::Drained);
734    drainEvent->process();
735}
736
737void
738TimingSimpleCPU::DcachePort::setPeer(Port *port)
739{
740    Port::setPeer(port);
741
742#if FULL_SYSTEM
743    // Update the ThreadContext's memory ports (Functional/Virtual
744    // Ports)
745    cpu->tcBase()->connectMemPorts();
746#endif
747}
748
749bool
750TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
751{
752    if (pkt->isResponse() && !pkt->wasNacked()) {
753        // delay processing of returned data until next CPU clock edge
754        Tick next_tick = cpu->nextCycle(curTick);
755
756        if (next_tick == curTick)
757            cpu->completeDataAccess(pkt);
758        else
759            tickEvent.schedule(pkt, next_tick);
760
761        return true;
762    }
763    else if (pkt->wasNacked()) {
764        assert(cpu->_status == DcacheWaitResponse);
765        pkt->reinitNacked();
766        if (!sendTiming(pkt)) {
767            cpu->_status = DcacheRetry;
768            cpu->dcache_pkt = pkt;
769        }
770    }
771    //Snooping a Coherence Request, do nothing
772    return true;
773}
774
775void
776TimingSimpleCPU::DcachePort::DTickEvent::process()
777{
778    cpu->completeDataAccess(pkt);
779}
780
781void
782TimingSimpleCPU::DcachePort::recvRetry()
783{
784    // we shouldn't get a retry unless we have a packet that we're
785    // waiting to transmit
786    assert(cpu->dcache_pkt != NULL);
787    assert(cpu->_status == DcacheRetry);
788    PacketPtr tmp = cpu->dcache_pkt;
789    if (sendTiming(tmp)) {
790        cpu->_status = DcacheWaitResponse;
791        // memory system takes ownership of packet
792        cpu->dcache_pkt = NULL;
793    }
794}
795
796TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu, Tick t)
797    : Event(&mainEventQueue), pkt(_pkt), cpu(_cpu)
798{
799    schedule(t);
800}
801
802void
803TimingSimpleCPU::IprEvent::process()
804{
805    cpu->completeDataAccess(pkt);
806}
807
808const char *
809TimingSimpleCPU::IprEvent::description()
810{
811    return "Timing Simple CPU Delay IPR event";
812}
813
814
815////////////////////////////////////////////////////////////////////////
816//
817//  TimingSimpleCPU Simulation Object
818//
819TimingSimpleCPU *
820TimingSimpleCPUParams::create()
821{
822    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
823    params->name = name;
824    params->numberOfThreads = 1;
825    params->max_insts_any_thread = max_insts_any_thread;
826    params->max_insts_all_threads = max_insts_all_threads;
827    params->max_loads_any_thread = max_loads_any_thread;
828    params->max_loads_all_threads = max_loads_all_threads;
829    params->progress_interval = progress_interval;
830    params->deferRegistration = defer_registration;
831    params->clock = clock;
832    params->phase = phase;
833    params->functionTrace = function_trace;
834    params->functionTraceStart = function_trace_start;
835    params->system = system;
836    params->cpu_id = cpu_id;
837    params->tracer = tracer;
838
839    params->itb = itb;
840    params->dtb = dtb;
841#if FULL_SYSTEM
842    params->profile = profile;
843    params->do_quiesce = do_quiesce;
844    params->do_checkpoint_insts = do_checkpoint_insts;
845    params->do_statistics_insts = do_statistics_insts;
846#else
847    if (workload.size() != 1)
848        panic("only one workload allowed");
849    params->process = workload[0];
850#endif
851
852    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
853    return cpu;
854}
855