timing.cc revision 5001:31fda5c37c19
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "base/bigint.hh"
34#include "cpu/exetrace.hh"
35#include "cpu/simple/timing.hh"
36#include "mem/packet.hh"
37#include "mem/packet_access.hh"
38#include "params/TimingSimpleCPU.hh"
39#include "sim/system.hh"
40
41using namespace std;
42using namespace TheISA;
43
44Port *
45TimingSimpleCPU::getPort(const std::string &if_name, int idx)
46{
47    if (if_name == "dcache_port")
48        return &dcachePort;
49    else if (if_name == "icache_port")
50        return &icachePort;
51    else
52        panic("No Such Port\n");
53}
54
55void
56TimingSimpleCPU::init()
57{
58    BaseCPU::init();
59#if FULL_SYSTEM
60    for (int i = 0; i < threadContexts.size(); ++i) {
61        ThreadContext *tc = threadContexts[i];
62
63        // initialize CPU, including PC
64        TheISA::initCPU(tc, tc->readCpuId());
65    }
66#endif
67}
68
69Tick
70TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
71{
72    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
73    return curTick;
74}
75
76void
77TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
78{
79    //No internal storage to update, jusst return
80    return;
81}
82
83void
84TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
85{
86    if (status == RangeChange) {
87        if (!snoopRangeSent) {
88            snoopRangeSent = true;
89            sendStatusChange(Port::RangeChange);
90        }
91        return;
92    }
93
94    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
95}
96
97
98void
99TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
100{
101    pkt = _pkt;
102    Event::schedule(t);
103}
104
105TimingSimpleCPU::TimingSimpleCPU(Params *p)
106    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
107      cpu_id(p->cpu_id)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    fetchEvent = NULL;
117    previousTick = 0;
118    changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129    SimObject::State so_state = SimObject::getState();
130    SERIALIZE_ENUM(so_state);
131    BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145    // TimingSimpleCPU is ready to drain if it's not waiting for
146    // an access to complete.
147    if (status() == Idle || status() == Running || status() == SwitchedOut) {
148        changeState(SimObject::Drained);
149        return 0;
150    } else {
151        changeState(SimObject::Draining);
152        drainEvent = drain_event;
153        return 1;
154    }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == Enums::timing);
162
163        // Delete the old event if it existed.
164        if (fetchEvent) {
165            if (fetchEvent->scheduled())
166                fetchEvent->deschedule();
167
168            delete fetchEvent;
169        }
170
171        fetchEvent = new FetchEvent(this, nextCycle());
172    }
173
174    changeState(SimObject::Running);
175    previousTick = curTick;
176}
177
178void
179TimingSimpleCPU::switchOut()
180{
181    assert(status() == Running || status() == Idle);
182    _status = SwitchedOut;
183    numCycles += curTick - previousTick;
184
185    // If we've been scheduled to resume but are then told to switch out,
186    // we'll need to cancel it.
187    if (fetchEvent && fetchEvent->scheduled())
188        fetchEvent->deschedule();
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197    // if any of this CPU's ThreadContexts are active, mark the CPU as
198    // running and schedule its tick event.
199    for (int i = 0; i < threadContexts.size(); ++i) {
200        ThreadContext *tc = threadContexts[i];
201        if (tc->status() == ThreadContext::Active && _status != Running) {
202            _status = Running;
203            break;
204        }
205    }
206
207    if (_status != Running) {
208        _status = Idle;
209    }
210}
211
212
213void
214TimingSimpleCPU::activateContext(int thread_num, int delay)
215{
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    fetchEvent = new FetchEvent(this, nextCycle(curTick + cycles(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244
245template <class T>
246Fault
247TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248{
249    Request *req =
250        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251                    cpu_id, /* thread ID */ 0);
252
253    if (traceData) {
254        traceData->setAddr(req->getVaddr());
255    }
256
257   // translate to physical address
258    Fault fault = thread->translateDataReadReq(req);
259
260    // Now do the access.
261    if (fault == NoFault) {
262        PacketPtr pkt =
263            new Packet(req,
264                       (req->isLocked() ?
265                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
266                       Packet::Broadcast);
267        pkt->dataDynamic<T>(new T);
268
269        if (!dcachePort.sendTiming(pkt)) {
270            _status = DcacheRetry;
271            dcache_pkt = pkt;
272        } else {
273            _status = DcacheWaitResponse;
274            // memory system takes ownership of packet
275            dcache_pkt = NULL;
276        }
277
278        // This will need a new way to tell if it has a dcache attached.
279        if (req->isUncacheable())
280            recordEvent("Uncached Read");
281    } else {
282        delete req;
283    }
284
285    return fault;
286}
287
288#ifndef DOXYGEN_SHOULD_SKIP_THIS
289
290template
291Fault
292TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
293
294template
295Fault
296TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
305
306template
307Fault
308TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
309
310template
311Fault
312TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
313
314#endif //DOXYGEN_SHOULD_SKIP_THIS
315
316template<>
317Fault
318TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
319{
320    return read(addr, *(uint64_t*)&data, flags);
321}
322
323template<>
324Fault
325TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
326{
327    return read(addr, *(uint32_t*)&data, flags);
328}
329
330
331template<>
332Fault
333TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
334{
335    return read(addr, (uint32_t&)data, flags);
336}
337
338
339template <class T>
340Fault
341TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
342{
343    Request *req =
344        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
345                    cpu_id, /* thread ID */ 0);
346
347    if (traceData) {
348        traceData->setAddr(req->getVaddr());
349    }
350
351    // translate to physical address
352    Fault fault = thread->translateDataWriteReq(req);
353
354    // Now do the access.
355    if (fault == NoFault) {
356        MemCmd cmd = MemCmd::WriteReq; // default
357        bool do_access = true;  // flag to suppress cache access
358
359        if (req->isLocked()) {
360            cmd = MemCmd::StoreCondReq;
361            do_access = TheISA::handleLockedWrite(thread, req);
362        } else if (req->isSwap()) {
363            cmd = MemCmd::SwapReq;
364            if (req->isCondSwap()) {
365                assert(res);
366                req->setExtraData(*res);
367            }
368        }
369
370        // Note: need to allocate dcache_pkt even if do_access is
371        // false, as it's used unconditionally to call completeAcc().
372        assert(dcache_pkt == NULL);
373        dcache_pkt = new Packet(req, cmd, Packet::Broadcast);
374        dcache_pkt->allocate();
375        dcache_pkt->set(data);
376
377        if (do_access) {
378            if (!dcachePort.sendTiming(dcache_pkt)) {
379                _status = DcacheRetry;
380            } else {
381                _status = DcacheWaitResponse;
382                // memory system takes ownership of packet
383                dcache_pkt = NULL;
384            }
385        }
386        // This will need a new way to tell if it's hooked up to a cache or not.
387        if (req->isUncacheable())
388            recordEvent("Uncached Write");
389    } else {
390        delete req;
391    }
392
393
394    // If the write needs to have a fault on the access, consider calling
395    // changeStatus() and changing it to "bad addr write" or something.
396    return fault;
397}
398
399
400#ifndef DOXYGEN_SHOULD_SKIP_THIS
401template
402Fault
403TimingSimpleCPU::write(Twin32_t data, Addr addr,
404                       unsigned flags, uint64_t *res);
405
406template
407Fault
408TimingSimpleCPU::write(Twin64_t data, Addr addr,
409                       unsigned flags, uint64_t *res);
410
411template
412Fault
413TimingSimpleCPU::write(uint64_t data, Addr addr,
414                       unsigned flags, uint64_t *res);
415
416template
417Fault
418TimingSimpleCPU::write(uint32_t data, Addr addr,
419                       unsigned flags, uint64_t *res);
420
421template
422Fault
423TimingSimpleCPU::write(uint16_t data, Addr addr,
424                       unsigned flags, uint64_t *res);
425
426template
427Fault
428TimingSimpleCPU::write(uint8_t data, Addr addr,
429                       unsigned flags, uint64_t *res);
430
431#endif //DOXYGEN_SHOULD_SKIP_THIS
432
433template<>
434Fault
435TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
436{
437    return write(*(uint64_t*)&data, addr, flags, res);
438}
439
440template<>
441Fault
442TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
443{
444    return write(*(uint32_t*)&data, addr, flags, res);
445}
446
447
448template<>
449Fault
450TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
451{
452    return write((uint32_t)data, addr, flags, res);
453}
454
455
456void
457TimingSimpleCPU::fetch()
458{
459    if (!curStaticInst || !curStaticInst->isDelayedCommit())
460        checkForInterrupts();
461
462    Request *ifetch_req = new Request();
463    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
464    Fault fault = setupFetchRequest(ifetch_req);
465
466    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
467    ifetch_pkt->dataStatic(&inst);
468
469    if (fault == NoFault) {
470        if (!icachePort.sendTiming(ifetch_pkt)) {
471            // Need to wait for retry
472            _status = IcacheRetry;
473        } else {
474            // Need to wait for cache to respond
475            _status = IcacheWaitResponse;
476            // ownership of packet transferred to memory system
477            ifetch_pkt = NULL;
478        }
479    } else {
480        delete ifetch_req;
481        delete ifetch_pkt;
482        // fetch fault: advance directly to next instruction (fault handler)
483        advanceInst(fault);
484    }
485
486    numCycles += curTick - previousTick;
487    previousTick = curTick;
488}
489
490
491void
492TimingSimpleCPU::advanceInst(Fault fault)
493{
494    advancePC(fault);
495
496    if (_status == Running) {
497        // kick off fetch of next instruction... callback from icache
498        // response will cause that instruction to be executed,
499        // keeping the CPU running.
500        fetch();
501    }
502}
503
504
505void
506TimingSimpleCPU::completeIfetch(PacketPtr pkt)
507{
508    // received a response from the icache: execute the received
509    // instruction
510    assert(!pkt->isError());
511    assert(_status == IcacheWaitResponse);
512
513    _status = Running;
514
515    numCycles += curTick - previousTick;
516    previousTick = curTick;
517
518    if (getState() == SimObject::Draining) {
519        delete pkt->req;
520        delete pkt;
521
522        completeDrain();
523        return;
524    }
525
526    preExecute();
527    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
528        // load or store: just send to dcache
529        Fault fault = curStaticInst->initiateAcc(this, traceData);
530        if (_status != Running) {
531            // instruction will complete in dcache response callback
532            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
533            assert(fault == NoFault);
534        } else {
535            if (fault == NoFault) {
536                // early fail on store conditional: complete now
537                assert(dcache_pkt != NULL);
538                fault = curStaticInst->completeAcc(dcache_pkt, this,
539                                                   traceData);
540                delete dcache_pkt->req;
541                delete dcache_pkt;
542                dcache_pkt = NULL;
543
544                // keep an instruction count
545                if (fault == NoFault)
546                    countInst();
547            } else if (traceData) {
548                // If there was a fault, we shouldn't trace this instruction.
549                delete traceData;
550                traceData = NULL;
551            }
552
553            postExecute();
554            advanceInst(fault);
555        }
556    } else {
557        // non-memory instruction: execute completely now
558        Fault fault = curStaticInst->execute(this, traceData);
559
560        // keep an instruction count
561        if (fault == NoFault)
562            countInst();
563        else if (traceData) {
564            // If there was a fault, we shouldn't trace this instruction.
565            delete traceData;
566            traceData = NULL;
567        }
568
569        postExecute();
570        advanceInst(fault);
571    }
572
573    delete pkt->req;
574    delete pkt;
575}
576
577void
578TimingSimpleCPU::IcachePort::ITickEvent::process()
579{
580    cpu->completeIfetch(pkt);
581}
582
583bool
584TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
585{
586    if (pkt->isResponse()) {
587        // delay processing of returned data until next CPU clock edge
588        Tick next_tick = cpu->nextCycle(curTick);
589
590        if (next_tick == curTick)
591            cpu->completeIfetch(pkt);
592        else
593            tickEvent.schedule(pkt, next_tick);
594
595        return true;
596    }
597    else if (pkt->wasNacked()) {
598        assert(cpu->_status == IcacheWaitResponse);
599        pkt->reinitNacked();
600        if (!sendTiming(pkt)) {
601            cpu->_status = IcacheRetry;
602            cpu->ifetch_pkt = pkt;
603        }
604    }
605    //Snooping a Coherence Request, do nothing
606    return true;
607}
608
609void
610TimingSimpleCPU::IcachePort::recvRetry()
611{
612    // we shouldn't get a retry unless we have a packet that we're
613    // waiting to transmit
614    assert(cpu->ifetch_pkt != NULL);
615    assert(cpu->_status == IcacheRetry);
616    PacketPtr tmp = cpu->ifetch_pkt;
617    if (sendTiming(tmp)) {
618        cpu->_status = IcacheWaitResponse;
619        cpu->ifetch_pkt = NULL;
620    }
621}
622
623void
624TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
625{
626    // received a response from the dcache: complete the load or store
627    // instruction
628    assert(!pkt->isError());
629    assert(_status == DcacheWaitResponse);
630    _status = Running;
631
632    numCycles += curTick - previousTick;
633    previousTick = curTick;
634
635    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
636
637    // keep an instruction count
638    if (fault == NoFault)
639        countInst();
640    else if (traceData) {
641        // If there was a fault, we shouldn't trace this instruction.
642        delete traceData;
643        traceData = NULL;
644    }
645
646    if (pkt->isRead() && pkt->isLocked()) {
647        TheISA::handleLockedRead(thread, pkt->req);
648    }
649
650    delete pkt->req;
651    delete pkt;
652
653    postExecute();
654
655    if (getState() == SimObject::Draining) {
656        advancePC(fault);
657        completeDrain();
658
659        return;
660    }
661
662    advanceInst(fault);
663}
664
665
666void
667TimingSimpleCPU::completeDrain()
668{
669    DPRINTF(Config, "Done draining\n");
670    changeState(SimObject::Drained);
671    drainEvent->process();
672}
673
674void
675TimingSimpleCPU::DcachePort::setPeer(Port *port)
676{
677    Port::setPeer(port);
678
679#if FULL_SYSTEM
680    // Update the ThreadContext's memory ports (Functional/Virtual
681    // Ports)
682    cpu->tcBase()->connectMemPorts();
683#endif
684}
685
686bool
687TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
688{
689    if (pkt->isResponse()) {
690        // delay processing of returned data until next CPU clock edge
691        Tick next_tick = cpu->nextCycle(curTick);
692
693        if (next_tick == curTick)
694            cpu->completeDataAccess(pkt);
695        else
696            tickEvent.schedule(pkt, next_tick);
697
698        return true;
699    }
700    else if (pkt->wasNacked()) {
701        assert(cpu->_status == DcacheWaitResponse);
702        pkt->reinitNacked();
703        if (!sendTiming(pkt)) {
704            cpu->_status = DcacheRetry;
705            cpu->dcache_pkt = pkt;
706        }
707    }
708    //Snooping a Coherence Request, do nothing
709    return true;
710}
711
712void
713TimingSimpleCPU::DcachePort::DTickEvent::process()
714{
715    cpu->completeDataAccess(pkt);
716}
717
718void
719TimingSimpleCPU::DcachePort::recvRetry()
720{
721    // we shouldn't get a retry unless we have a packet that we're
722    // waiting to transmit
723    assert(cpu->dcache_pkt != NULL);
724    assert(cpu->_status == DcacheRetry);
725    PacketPtr tmp = cpu->dcache_pkt;
726    if (sendTiming(tmp)) {
727        cpu->_status = DcacheWaitResponse;
728        // memory system takes ownership of packet
729        cpu->dcache_pkt = NULL;
730    }
731}
732
733
734////////////////////////////////////////////////////////////////////////
735//
736//  TimingSimpleCPU Simulation Object
737//
738TimingSimpleCPU *
739TimingSimpleCPUParams::create()
740{
741    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
742    params->name = name;
743    params->numberOfThreads = 1;
744    params->max_insts_any_thread = max_insts_any_thread;
745    params->max_insts_all_threads = max_insts_all_threads;
746    params->max_loads_any_thread = max_loads_any_thread;
747    params->max_loads_all_threads = max_loads_all_threads;
748    params->progress_interval = progress_interval;
749    params->deferRegistration = defer_registration;
750    params->clock = clock;
751    params->phase = phase;
752    params->functionTrace = function_trace;
753    params->functionTraceStart = function_trace_start;
754    params->system = system;
755    params->cpu_id = cpu_id;
756    params->tracer = tracer;
757
758    params->itb = itb;
759    params->dtb = dtb;
760#if FULL_SYSTEM
761    params->profile = profile;
762    params->do_quiesce = do_quiesce;
763    params->do_checkpoint_insts = do_checkpoint_insts;
764    params->do_statistics_insts = do_statistics_insts;
765#else
766    if (workload.size() != 1)
767        panic("only one workload allowed");
768    params->process = workload[0];
769#endif
770
771    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
772    return cpu;
773}
774