timing.cc revision 4878:5b747482d2d8
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "base/bigint.hh"
34#include "cpu/exetrace.hh"
35#include "cpu/simple/timing.hh"
36#include "mem/packet.hh"
37#include "mem/packet_access.hh"
38#include "sim/builder.hh"
39#include "sim/system.hh"
40
41using namespace std;
42using namespace TheISA;
43
44Port *
45TimingSimpleCPU::getPort(const std::string &if_name, int idx)
46{
47    if (if_name == "dcache_port")
48        return &dcachePort;
49    else if (if_name == "icache_port")
50        return &icachePort;
51    else
52        panic("No Such Port\n");
53}
54
55void
56TimingSimpleCPU::init()
57{
58    BaseCPU::init();
59#if FULL_SYSTEM
60    for (int i = 0; i < threadContexts.size(); ++i) {
61        ThreadContext *tc = threadContexts[i];
62
63        // initialize CPU, including PC
64        TheISA::initCPU(tc, tc->readCpuId());
65    }
66#endif
67}
68
69Tick
70TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
71{
72    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
73    return curTick;
74}
75
76void
77TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
78{
79    //No internal storage to update, jusst return
80    return;
81}
82
83void
84TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
85{
86    if (status == RangeChange) {
87        if (!snoopRangeSent) {
88            snoopRangeSent = true;
89            sendStatusChange(Port::RangeChange);
90        }
91        return;
92    }
93
94    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
95}
96
97
98void
99TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
100{
101    pkt = _pkt;
102    Event::schedule(t);
103}
104
105TimingSimpleCPU::TimingSimpleCPU(Params *p)
106    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
107      cpu_id(p->cpu_id)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    fetchEvent = NULL;
117    previousTick = 0;
118    changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129    SimObject::State so_state = SimObject::getState();
130    SERIALIZE_ENUM(so_state);
131    BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145    // TimingSimpleCPU is ready to drain if it's not waiting for
146    // an access to complete.
147    if (status() == Idle || status() == Running || status() == SwitchedOut) {
148        changeState(SimObject::Drained);
149        return 0;
150    } else {
151        changeState(SimObject::Draining);
152        drainEvent = drain_event;
153        return 1;
154    }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == System::Timing);
162
163        // Delete the old event if it existed.
164        if (fetchEvent) {
165            if (fetchEvent->scheduled())
166                fetchEvent->deschedule();
167
168            delete fetchEvent;
169        }
170
171        fetchEvent = new FetchEvent(this, nextCycle());
172    }
173
174    changeState(SimObject::Running);
175    previousTick = curTick;
176}
177
178void
179TimingSimpleCPU::switchOut()
180{
181    assert(status() == Running || status() == Idle);
182    _status = SwitchedOut;
183    numCycles += curTick - previousTick;
184
185    // If we've been scheduled to resume but are then told to switch out,
186    // we'll need to cancel it.
187    if (fetchEvent && fetchEvent->scheduled())
188        fetchEvent->deschedule();
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
196
197    // if any of this CPU's ThreadContexts are active, mark the CPU as
198    // running and schedule its tick event.
199    for (int i = 0; i < threadContexts.size(); ++i) {
200        ThreadContext *tc = threadContexts[i];
201        if (tc->status() == ThreadContext::Active && _status != Running) {
202            _status = Running;
203            break;
204        }
205    }
206
207    if (_status != Running) {
208        _status = Idle;
209    }
210}
211
212
213void
214TimingSimpleCPU::activateContext(int thread_num, int delay)
215{
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Idle);
220
221    notIdleFraction++;
222    _status = Running;
223
224    // kick things off by initiating the fetch of the next instruction
225    fetchEvent = new FetchEvent(this, nextCycle(curTick + cycles(delay)));
226}
227
228
229void
230TimingSimpleCPU::suspendContext(int thread_num)
231{
232    assert(thread_num == 0);
233    assert(thread);
234
235    assert(_status == Running);
236
237    // just change status to Idle... if status != Running,
238    // completeInst() will not initiate fetch of next instruction.
239
240    notIdleFraction--;
241    _status = Idle;
242}
243
244
245template <class T>
246Fault
247TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
248{
249    Request *req =
250        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
251                    cpu_id, /* thread ID */ 0);
252
253    if (traceData) {
254        traceData->setAddr(req->getVaddr());
255    }
256
257   // translate to physical address
258    Fault fault = thread->translateDataReadReq(req);
259
260    // Now do the access.
261    if (fault == NoFault) {
262        PacketPtr pkt =
263            new Packet(req,
264                       (req->isLocked() ?
265                        MemCmd::LoadLockedReq : MemCmd::ReadReq),
266                       Packet::Broadcast);
267        pkt->dataDynamic<T>(new T);
268
269        if (!dcachePort.sendTiming(pkt)) {
270            _status = DcacheRetry;
271            dcache_pkt = pkt;
272        } else {
273            _status = DcacheWaitResponse;
274            // memory system takes ownership of packet
275            dcache_pkt = NULL;
276        }
277
278        // This will need a new way to tell if it has a dcache attached.
279        if (req->isUncacheable())
280            recordEvent("Uncached Read");
281    } else {
282        delete req;
283    }
284
285    return fault;
286}
287
288#ifndef DOXYGEN_SHOULD_SKIP_THIS
289
290template
291Fault
292TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
293
294template
295Fault
296TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
305
306template
307Fault
308TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
309
310template
311Fault
312TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
313
314#endif //DOXYGEN_SHOULD_SKIP_THIS
315
316template<>
317Fault
318TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
319{
320    return read(addr, *(uint64_t*)&data, flags);
321}
322
323template<>
324Fault
325TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
326{
327    return read(addr, *(uint32_t*)&data, flags);
328}
329
330
331template<>
332Fault
333TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
334{
335    return read(addr, (uint32_t&)data, flags);
336}
337
338
339template <class T>
340Fault
341TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
342{
343    Request *req =
344        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
345                    cpu_id, /* thread ID */ 0);
346
347    if (traceData) {
348        traceData->setAddr(req->getVaddr());
349    }
350
351    // translate to physical address
352    Fault fault = thread->translateDataWriteReq(req);
353
354    // Now do the access.
355    if (fault == NoFault) {
356        MemCmd cmd = MemCmd::WriteReq; // default
357        bool do_access = true;  // flag to suppress cache access
358
359        assert(dcache_pkt == NULL);
360
361        if (req->isLocked()) {
362            cmd = MemCmd::StoreCondReq;
363            do_access = TheISA::handleLockedWrite(thread, req);
364        } else if (req->isSwap()) {
365            cmd = MemCmd::SwapReq;
366            if (req->isCondSwap()) {
367                assert(res);
368                req->setExtraData(*res);
369            }
370        }
371
372        if (do_access) {
373            dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
374            dcache_pkt->allocate();
375            dcache_pkt->set(data);
376
377            if (!dcachePort.sendTiming(dcache_pkt)) {
378                _status = DcacheRetry;
379            } else {
380                _status = DcacheWaitResponse;
381                // memory system takes ownership of packet
382                dcache_pkt = NULL;
383            }
384        }
385        // This will need a new way to tell if it's hooked up to a cache or not.
386        if (req->isUncacheable())
387            recordEvent("Uncached Write");
388    } else {
389        delete req;
390    }
391
392
393    // If the write needs to have a fault on the access, consider calling
394    // changeStatus() and changing it to "bad addr write" or something.
395    return fault;
396}
397
398
399#ifndef DOXYGEN_SHOULD_SKIP_THIS
400template
401Fault
402TimingSimpleCPU::write(Twin32_t data, Addr addr,
403                       unsigned flags, uint64_t *res);
404
405template
406Fault
407TimingSimpleCPU::write(Twin64_t data, Addr addr,
408                       unsigned flags, uint64_t *res);
409
410template
411Fault
412TimingSimpleCPU::write(uint64_t data, Addr addr,
413                       unsigned flags, uint64_t *res);
414
415template
416Fault
417TimingSimpleCPU::write(uint32_t data, Addr addr,
418                       unsigned flags, uint64_t *res);
419
420template
421Fault
422TimingSimpleCPU::write(uint16_t data, Addr addr,
423                       unsigned flags, uint64_t *res);
424
425template
426Fault
427TimingSimpleCPU::write(uint8_t data, Addr addr,
428                       unsigned flags, uint64_t *res);
429
430#endif //DOXYGEN_SHOULD_SKIP_THIS
431
432template<>
433Fault
434TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
435{
436    return write(*(uint64_t*)&data, addr, flags, res);
437}
438
439template<>
440Fault
441TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
442{
443    return write(*(uint32_t*)&data, addr, flags, res);
444}
445
446
447template<>
448Fault
449TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
450{
451    return write((uint32_t)data, addr, flags, res);
452}
453
454
455void
456TimingSimpleCPU::fetch()
457{
458    if (!curStaticInst || !curStaticInst->isDelayedCommit())
459        checkForInterrupts();
460
461    Request *ifetch_req = new Request();
462    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
463    Fault fault = setupFetchRequest(ifetch_req);
464
465    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
466    ifetch_pkt->dataStatic(&inst);
467
468    if (fault == NoFault) {
469        if (!icachePort.sendTiming(ifetch_pkt)) {
470            // Need to wait for retry
471            _status = IcacheRetry;
472        } else {
473            // Need to wait for cache to respond
474            _status = IcacheWaitResponse;
475            // ownership of packet transferred to memory system
476            ifetch_pkt = NULL;
477        }
478    } else {
479        delete ifetch_req;
480        delete ifetch_pkt;
481        // fetch fault: advance directly to next instruction (fault handler)
482        advanceInst(fault);
483    }
484
485    numCycles += curTick - previousTick;
486    previousTick = curTick;
487}
488
489
490void
491TimingSimpleCPU::advanceInst(Fault fault)
492{
493    advancePC(fault);
494
495    if (_status == Running) {
496        // kick off fetch of next instruction... callback from icache
497        // response will cause that instruction to be executed,
498        // keeping the CPU running.
499        fetch();
500    }
501}
502
503
504void
505TimingSimpleCPU::completeIfetch(PacketPtr pkt)
506{
507    // received a response from the icache: execute the received
508    // instruction
509    assert(!pkt->isError());
510    assert(_status == IcacheWaitResponse);
511
512    _status = Running;
513
514    numCycles += curTick - previousTick;
515    previousTick = curTick;
516
517    if (getState() == SimObject::Draining) {
518        delete pkt->req;
519        delete pkt;
520
521        completeDrain();
522        return;
523    }
524
525    preExecute();
526    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
527        // load or store: just send to dcache
528        Fault fault = curStaticInst->initiateAcc(this, traceData);
529        if (_status != Running) {
530            // instruction will complete in dcache response callback
531            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
532            assert(fault == NoFault);
533        } else {
534            if (fault == NoFault) {
535                // early fail on store conditional: complete now
536                assert(dcache_pkt != NULL);
537                fault = curStaticInst->completeAcc(dcache_pkt, this,
538                                                   traceData);
539                delete dcache_pkt->req;
540                delete dcache_pkt;
541                dcache_pkt = NULL;
542            }
543            postExecute();
544            advanceInst(fault);
545        }
546    } else {
547        // non-memory instruction: execute completely now
548        Fault fault = curStaticInst->execute(this, traceData);
549        postExecute();
550        advanceInst(fault);
551    }
552
553    delete pkt->req;
554    delete pkt;
555}
556
557void
558TimingSimpleCPU::IcachePort::ITickEvent::process()
559{
560    cpu->completeIfetch(pkt);
561}
562
563bool
564TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
565{
566    if (pkt->isResponse()) {
567        // delay processing of returned data until next CPU clock edge
568        Tick next_tick = cpu->nextCycle(curTick);
569
570        if (next_tick == curTick)
571            cpu->completeIfetch(pkt);
572        else
573            tickEvent.schedule(pkt, next_tick);
574
575        return true;
576    }
577    else if (pkt->wasNacked()) {
578        assert(cpu->_status == IcacheWaitResponse);
579        pkt->reinitNacked();
580        if (!sendTiming(pkt)) {
581            cpu->_status = IcacheRetry;
582            cpu->ifetch_pkt = pkt;
583        }
584    }
585    //Snooping a Coherence Request, do nothing
586    return true;
587}
588
589void
590TimingSimpleCPU::IcachePort::recvRetry()
591{
592    // we shouldn't get a retry unless we have a packet that we're
593    // waiting to transmit
594    assert(cpu->ifetch_pkt != NULL);
595    assert(cpu->_status == IcacheRetry);
596    PacketPtr tmp = cpu->ifetch_pkt;
597    if (sendTiming(tmp)) {
598        cpu->_status = IcacheWaitResponse;
599        cpu->ifetch_pkt = NULL;
600    }
601}
602
603void
604TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
605{
606    // received a response from the dcache: complete the load or store
607    // instruction
608    assert(!pkt->isError());
609    assert(_status == DcacheWaitResponse);
610    _status = Running;
611
612    numCycles += curTick - previousTick;
613    previousTick = curTick;
614
615    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
616
617    if (pkt->isRead() && pkt->isLocked()) {
618        TheISA::handleLockedRead(thread, pkt->req);
619    }
620
621    delete pkt->req;
622    delete pkt;
623
624    postExecute();
625
626    if (getState() == SimObject::Draining) {
627        advancePC(fault);
628        completeDrain();
629
630        return;
631    }
632
633    advanceInst(fault);
634}
635
636
637void
638TimingSimpleCPU::completeDrain()
639{
640    DPRINTF(Config, "Done draining\n");
641    changeState(SimObject::Drained);
642    drainEvent->process();
643}
644
645void
646TimingSimpleCPU::DcachePort::setPeer(Port *port)
647{
648    Port::setPeer(port);
649
650#if FULL_SYSTEM
651    // Update the ThreadContext's memory ports (Functional/Virtual
652    // Ports)
653    cpu->tcBase()->connectMemPorts();
654#endif
655}
656
657bool
658TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
659{
660    if (pkt->isResponse()) {
661        // delay processing of returned data until next CPU clock edge
662        Tick next_tick = cpu->nextCycle(curTick);
663
664        if (next_tick == curTick)
665            cpu->completeDataAccess(pkt);
666        else
667            tickEvent.schedule(pkt, next_tick);
668
669        return true;
670    }
671    else if (pkt->wasNacked()) {
672        assert(cpu->_status == DcacheWaitResponse);
673        pkt->reinitNacked();
674        if (!sendTiming(pkt)) {
675            cpu->_status = DcacheRetry;
676            cpu->dcache_pkt = pkt;
677        }
678    }
679    //Snooping a Coherence Request, do nothing
680    return true;
681}
682
683void
684TimingSimpleCPU::DcachePort::DTickEvent::process()
685{
686    cpu->completeDataAccess(pkt);
687}
688
689void
690TimingSimpleCPU::DcachePort::recvRetry()
691{
692    // we shouldn't get a retry unless we have a packet that we're
693    // waiting to transmit
694    assert(cpu->dcache_pkt != NULL);
695    assert(cpu->_status == DcacheRetry);
696    PacketPtr tmp = cpu->dcache_pkt;
697    if (sendTiming(tmp)) {
698        cpu->_status = DcacheWaitResponse;
699        // memory system takes ownership of packet
700        cpu->dcache_pkt = NULL;
701    }
702}
703
704
705////////////////////////////////////////////////////////////////////////
706//
707//  TimingSimpleCPU Simulation Object
708//
709BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
710
711    Param<Counter> max_insts_any_thread;
712    Param<Counter> max_insts_all_threads;
713    Param<Counter> max_loads_any_thread;
714    Param<Counter> max_loads_all_threads;
715    Param<Tick> progress_interval;
716    SimObjectParam<System *> system;
717    Param<int> cpu_id;
718
719#if FULL_SYSTEM
720    SimObjectParam<TheISA::ITB *> itb;
721    SimObjectParam<TheISA::DTB *> dtb;
722    Param<Tick> profile;
723
724    Param<bool> do_quiesce;
725    Param<bool> do_checkpoint_insts;
726    Param<bool> do_statistics_insts;
727#else
728    SimObjectParam<Process *> workload;
729#endif // FULL_SYSTEM
730
731    Param<int> clock;
732    Param<int> phase;
733
734    Param<bool> defer_registration;
735    Param<int> width;
736    Param<bool> function_trace;
737    Param<Tick> function_trace_start;
738    Param<bool> simulate_stalls;
739
740END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
741
742BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
743
744    INIT_PARAM(max_insts_any_thread,
745               "terminate when any thread reaches this inst count"),
746    INIT_PARAM(max_insts_all_threads,
747               "terminate when all threads have reached this inst count"),
748    INIT_PARAM(max_loads_any_thread,
749               "terminate when any thread reaches this load count"),
750    INIT_PARAM(max_loads_all_threads,
751               "terminate when all threads have reached this load count"),
752    INIT_PARAM(progress_interval, "Progress interval"),
753    INIT_PARAM(system, "system object"),
754    INIT_PARAM(cpu_id, "processor ID"),
755
756#if FULL_SYSTEM
757    INIT_PARAM(itb, "Instruction TLB"),
758    INIT_PARAM(dtb, "Data TLB"),
759    INIT_PARAM(profile, ""),
760    INIT_PARAM(do_quiesce, ""),
761    INIT_PARAM(do_checkpoint_insts, ""),
762    INIT_PARAM(do_statistics_insts, ""),
763#else
764    INIT_PARAM(workload, "processes to run"),
765#endif // FULL_SYSTEM
766
767    INIT_PARAM(clock, "clock speed"),
768    INIT_PARAM_DFLT(phase, "clock phase", 0),
769    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
770    INIT_PARAM(width, "cpu width"),
771    INIT_PARAM(function_trace, "Enable function trace"),
772    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
773    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
774
775END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
776
777
778CREATE_SIM_OBJECT(TimingSimpleCPU)
779{
780    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
781    params->name = getInstanceName();
782    params->numberOfThreads = 1;
783    params->max_insts_any_thread = max_insts_any_thread;
784    params->max_insts_all_threads = max_insts_all_threads;
785    params->max_loads_any_thread = max_loads_any_thread;
786    params->max_loads_all_threads = max_loads_all_threads;
787    params->progress_interval = progress_interval;
788    params->deferRegistration = defer_registration;
789    params->clock = clock;
790    params->phase = phase;
791    params->functionTrace = function_trace;
792    params->functionTraceStart = function_trace_start;
793    params->system = system;
794    params->cpu_id = cpu_id;
795
796#if FULL_SYSTEM
797    params->itb = itb;
798    params->dtb = dtb;
799    params->profile = profile;
800    params->do_quiesce = do_quiesce;
801    params->do_checkpoint_insts = do_checkpoint_insts;
802    params->do_statistics_insts = do_statistics_insts;
803#else
804    params->process = workload;
805#endif
806
807    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
808    return cpu;
809}
810
811REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
812
813