timing.cc revision 4192:7accc6365bb9
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "base/bigint.hh"
34#include "cpu/exetrace.hh"
35#include "cpu/simple/timing.hh"
36#include "mem/packet.hh"
37#include "mem/packet_access.hh"
38#include "sim/builder.hh"
39#include "sim/system.hh"
40
41using namespace std;
42using namespace TheISA;
43
44Port *
45TimingSimpleCPU::getPort(const std::string &if_name, int idx)
46{
47    if (if_name == "dcache_port")
48        return &dcachePort;
49    else if (if_name == "icache_port")
50        return &icachePort;
51    else
52        panic("No Such Port\n");
53}
54
55void
56TimingSimpleCPU::init()
57{
58    BaseCPU::init();
59#if FULL_SYSTEM
60    for (int i = 0; i < threadContexts.size(); ++i) {
61        ThreadContext *tc = threadContexts[i];
62
63        // initialize CPU, including PC
64        TheISA::initCPU(tc, tc->readCpuId());
65    }
66#endif
67}
68
69Tick
70TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
71{
72    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
73    return curTick;
74}
75
76void
77TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
78{
79    //No internal storage to update, jusst return
80    return;
81}
82
83void
84TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
85{
86    if (status == RangeChange) {
87        if (!snoopRangeSent) {
88            snoopRangeSent = true;
89            sendStatusChange(Port::RangeChange);
90        }
91        return;
92    }
93
94    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
95}
96
97
98void
99TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
100{
101    pkt = _pkt;
102    Event::schedule(t);
103}
104
105TimingSimpleCPU::TimingSimpleCPU(Params *p)
106    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
107      cpu_id(p->cpu_id)
108{
109    _status = Idle;
110
111    icachePort.snoopRangeSent = false;
112    dcachePort.snoopRangeSent = false;
113
114    ifetch_pkt = dcache_pkt = NULL;
115    drainEvent = NULL;
116    fetchEvent = NULL;
117    previousTick = 0;
118    changeState(SimObject::Running);
119}
120
121
122TimingSimpleCPU::~TimingSimpleCPU()
123{
124}
125
126void
127TimingSimpleCPU::serialize(ostream &os)
128{
129    SimObject::State so_state = SimObject::getState();
130    SERIALIZE_ENUM(so_state);
131    BaseSimpleCPU::serialize(os);
132}
133
134void
135TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    BaseSimpleCPU::unserialize(cp, section);
140}
141
142unsigned int
143TimingSimpleCPU::drain(Event *drain_event)
144{
145    // TimingSimpleCPU is ready to drain if it's not waiting for
146    // an access to complete.
147    if (status() == Idle || status() == Running || status() == SwitchedOut) {
148        changeState(SimObject::Drained);
149        return 0;
150    } else {
151        changeState(SimObject::Draining);
152        drainEvent = drain_event;
153        return 1;
154    }
155}
156
157void
158TimingSimpleCPU::resume()
159{
160    if (_status != SwitchedOut && _status != Idle) {
161        assert(system->getMemoryMode() == System::Timing);
162
163        // Delete the old event if it existed.
164        if (fetchEvent) {
165            if (fetchEvent->scheduled())
166                fetchEvent->deschedule();
167
168            delete fetchEvent;
169        }
170
171        fetchEvent =
172            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
173        fetchEvent->schedule(nextCycle());
174    }
175
176    changeState(SimObject::Running);
177    previousTick = curTick;
178}
179
180void
181TimingSimpleCPU::switchOut()
182{
183    assert(status() == Running || status() == Idle);
184    _status = SwitchedOut;
185    numCycles += curTick - previousTick;
186
187    // If we've been scheduled to resume but are then told to switch out,
188    // we'll need to cancel it.
189    if (fetchEvent && fetchEvent->scheduled())
190        fetchEvent->deschedule();
191}
192
193
194void
195TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
196{
197    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
198
199    // if any of this CPU's ThreadContexts are active, mark the CPU as
200    // running and schedule its tick event.
201    for (int i = 0; i < threadContexts.size(); ++i) {
202        ThreadContext *tc = threadContexts[i];
203        if (tc->status() == ThreadContext::Active && _status != Running) {
204            _status = Running;
205            break;
206        }
207    }
208
209    if (_status != Running) {
210        _status = Idle;
211    }
212}
213
214
215void
216TimingSimpleCPU::activateContext(int thread_num, int delay)
217{
218    assert(thread_num == 0);
219    assert(thread);
220
221    assert(_status == Idle);
222
223    notIdleFraction++;
224    _status = Running;
225
226    // kick things off by initiating the fetch of the next instruction
227    fetchEvent =
228        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
229    fetchEvent->schedule(nextCycle(curTick + cycles(delay)));
230}
231
232
233void
234TimingSimpleCPU::suspendContext(int thread_num)
235{
236    assert(thread_num == 0);
237    assert(thread);
238
239    assert(_status == Running);
240
241    // just change status to Idle... if status != Running,
242    // completeInst() will not initiate fetch of next instruction.
243
244    notIdleFraction--;
245    _status = Idle;
246}
247
248
249template <class T>
250Fault
251TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
252{
253    Request *req =
254        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
255                    cpu_id, /* thread ID */ 0);
256
257    if (traceData) {
258        traceData->setAddr(req->getVaddr());
259    }
260
261   // translate to physical address
262    Fault fault = thread->translateDataReadReq(req);
263
264    // Now do the access.
265    if (fault == NoFault) {
266        PacketPtr pkt =
267            new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
268        pkt->dataDynamic<T>(new T);
269
270        if (!dcachePort.sendTiming(pkt)) {
271            _status = DcacheRetry;
272            dcache_pkt = pkt;
273        } else {
274            _status = DcacheWaitResponse;
275            // memory system takes ownership of packet
276            dcache_pkt = NULL;
277        }
278    } else {
279        delete req;
280    }
281
282    // This will need a new way to tell if it has a dcache attached.
283    if (req->isUncacheable())
284        recordEvent("Uncached Read");
285
286    return fault;
287}
288
289#ifndef DOXYGEN_SHOULD_SKIP_THIS
290
291template
292Fault
293TimingSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
294
295template
296Fault
297TimingSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
298
299template
300Fault
301TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
302
303template
304Fault
305TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
306
307template
308Fault
309TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
310
311template
312Fault
313TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
314
315#endif //DOXYGEN_SHOULD_SKIP_THIS
316
317template<>
318Fault
319TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
320{
321    return read(addr, *(uint64_t*)&data, flags);
322}
323
324template<>
325Fault
326TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
327{
328    return read(addr, *(uint32_t*)&data, flags);
329}
330
331
332template<>
333Fault
334TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
335{
336    return read(addr, (uint32_t&)data, flags);
337}
338
339
340template <class T>
341Fault
342TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
343{
344    Request *req =
345        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
346                    cpu_id, /* thread ID */ 0);
347
348    if (traceData) {
349        traceData->setAddr(req->getVaddr());
350    }
351
352    // translate to physical address
353    Fault fault = thread->translateDataWriteReq(req);
354
355    // Now do the access.
356    if (fault == NoFault) {
357        assert(dcache_pkt == NULL);
358        if (req->isSwap())
359            dcache_pkt = new Packet(req, MemCmd::SwapReq, Packet::Broadcast);
360        else
361            dcache_pkt = new Packet(req, MemCmd::WriteReq, Packet::Broadcast);
362        dcache_pkt->allocate();
363        dcache_pkt->set(data);
364
365        bool do_access = true;  // flag to suppress cache access
366
367        if (req->isLocked()) {
368            do_access = TheISA::handleLockedWrite(thread, req);
369        }
370        if (req->isCondSwap()) {
371             assert(res);
372             req->setExtraData(*res);
373        }
374
375        if (do_access) {
376            if (!dcachePort.sendTiming(dcache_pkt)) {
377                _status = DcacheRetry;
378            } else {
379                _status = DcacheWaitResponse;
380                // memory system takes ownership of packet
381                dcache_pkt = NULL;
382            }
383        }
384    } else {
385        delete req;
386    }
387
388    // This will need a new way to tell if it's hooked up to a cache or not.
389    if (req->isUncacheable())
390        recordEvent("Uncached Write");
391
392    // If the write needs to have a fault on the access, consider calling
393    // changeStatus() and changing it to "bad addr write" or something.
394    return fault;
395}
396
397
398#ifndef DOXYGEN_SHOULD_SKIP_THIS
399template
400Fault
401TimingSimpleCPU::write(uint64_t data, Addr addr,
402                       unsigned flags, uint64_t *res);
403
404template
405Fault
406TimingSimpleCPU::write(uint32_t data, Addr addr,
407                       unsigned flags, uint64_t *res);
408
409template
410Fault
411TimingSimpleCPU::write(uint16_t data, Addr addr,
412                       unsigned flags, uint64_t *res);
413
414template
415Fault
416TimingSimpleCPU::write(uint8_t data, Addr addr,
417                       unsigned flags, uint64_t *res);
418
419#endif //DOXYGEN_SHOULD_SKIP_THIS
420
421template<>
422Fault
423TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
424{
425    return write(*(uint64_t*)&data, addr, flags, res);
426}
427
428template<>
429Fault
430TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
431{
432    return write(*(uint32_t*)&data, addr, flags, res);
433}
434
435
436template<>
437Fault
438TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
439{
440    return write((uint32_t)data, addr, flags, res);
441}
442
443
444void
445TimingSimpleCPU::fetch()
446{
447    if (!curStaticInst || !curStaticInst->isDelayedCommit())
448        checkForInterrupts();
449
450    Request *ifetch_req = new Request();
451    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
452    Fault fault = setupFetchRequest(ifetch_req);
453
454    ifetch_pkt = new Packet(ifetch_req, MemCmd::ReadReq, Packet::Broadcast);
455    ifetch_pkt->dataStatic(&inst);
456
457    if (fault == NoFault) {
458        if (!icachePort.sendTiming(ifetch_pkt)) {
459            // Need to wait for retry
460            _status = IcacheRetry;
461        } else {
462            // Need to wait for cache to respond
463            _status = IcacheWaitResponse;
464            // ownership of packet transferred to memory system
465            ifetch_pkt = NULL;
466        }
467    } else {
468        delete ifetch_req;
469        delete ifetch_pkt;
470        // fetch fault: advance directly to next instruction (fault handler)
471        advanceInst(fault);
472    }
473
474    numCycles += curTick - previousTick;
475    previousTick = curTick;
476}
477
478
479void
480TimingSimpleCPU::advanceInst(Fault fault)
481{
482    advancePC(fault);
483
484    if (_status == Running) {
485        // kick off fetch of next instruction... callback from icache
486        // response will cause that instruction to be executed,
487        // keeping the CPU running.
488        fetch();
489    }
490}
491
492
493void
494TimingSimpleCPU::completeIfetch(PacketPtr pkt)
495{
496    // received a response from the icache: execute the received
497    // instruction
498    assert(pkt->result == Packet::Success);
499    assert(_status == IcacheWaitResponse);
500
501    _status = Running;
502
503    numCycles += curTick - previousTick;
504    previousTick = curTick;
505
506    if (getState() == SimObject::Draining) {
507        delete pkt->req;
508        delete pkt;
509
510        completeDrain();
511        return;
512    }
513
514    preExecute();
515    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
516        // load or store: just send to dcache
517        Fault fault = curStaticInst->initiateAcc(this, traceData);
518        if (_status != Running) {
519            // instruction will complete in dcache response callback
520            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
521            assert(fault == NoFault);
522        } else {
523            if (fault == NoFault) {
524                // early fail on store conditional: complete now
525                assert(dcache_pkt != NULL);
526                fault = curStaticInst->completeAcc(dcache_pkt, this,
527                                                   traceData);
528                delete dcache_pkt->req;
529                delete dcache_pkt;
530                dcache_pkt = NULL;
531            }
532            postExecute();
533            advanceInst(fault);
534        }
535    } else {
536        // non-memory instruction: execute completely now
537        Fault fault = curStaticInst->execute(this, traceData);
538        postExecute();
539        advanceInst(fault);
540    }
541
542    delete pkt->req;
543    delete pkt;
544}
545
546void
547TimingSimpleCPU::IcachePort::ITickEvent::process()
548{
549    cpu->completeIfetch(pkt);
550}
551
552bool
553TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
554{
555    if (pkt->isResponse()) {
556        // delay processing of returned data until next CPU clock edge
557        Tick mem_time = pkt->req->getTime();
558        Tick next_tick = cpu->nextCycle(mem_time);
559
560        if (next_tick == curTick)
561            cpu->completeIfetch(pkt);
562        else
563            tickEvent.schedule(pkt, next_tick);
564
565        return true;
566    }
567    else {
568        //Snooping a Coherence Request, do nothing
569        return true;
570    }
571}
572
573void
574TimingSimpleCPU::IcachePort::recvRetry()
575{
576    // we shouldn't get a retry unless we have a packet that we're
577    // waiting to transmit
578    assert(cpu->ifetch_pkt != NULL);
579    assert(cpu->_status == IcacheRetry);
580    PacketPtr tmp = cpu->ifetch_pkt;
581    if (sendTiming(tmp)) {
582        cpu->_status = IcacheWaitResponse;
583        cpu->ifetch_pkt = NULL;
584    }
585}
586
587void
588TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
589{
590    // received a response from the dcache: complete the load or store
591    // instruction
592    assert(pkt->result == Packet::Success);
593    assert(_status == DcacheWaitResponse);
594    _status = Running;
595
596    numCycles += curTick - previousTick;
597    previousTick = curTick;
598
599    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
600
601    if (pkt->isRead() && pkt->req->isLocked()) {
602        TheISA::handleLockedRead(thread, pkt->req);
603    }
604
605    delete pkt->req;
606    delete pkt;
607
608    postExecute();
609
610    if (getState() == SimObject::Draining) {
611        advancePC(fault);
612        completeDrain();
613
614        return;
615    }
616
617    advanceInst(fault);
618}
619
620
621void
622TimingSimpleCPU::completeDrain()
623{
624    DPRINTF(Config, "Done draining\n");
625    changeState(SimObject::Drained);
626    drainEvent->process();
627}
628
629void
630TimingSimpleCPU::DcachePort::setPeer(Port *port)
631{
632    Port::setPeer(port);
633
634#if FULL_SYSTEM
635    // Update the ThreadContext's memory ports (Functional/Virtual
636    // Ports)
637    cpu->tcBase()->connectMemPorts();
638#endif
639}
640
641bool
642TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
643{
644    if (pkt->isResponse()) {
645        // delay processing of returned data until next CPU clock edge
646        Tick mem_time = pkt->req->getTime();
647        Tick next_tick = cpu->nextCycle(mem_time);
648
649        if (next_tick == curTick)
650            cpu->completeDataAccess(pkt);
651        else
652            tickEvent.schedule(pkt, next_tick);
653
654        return true;
655    }
656    else {
657        //Snooping a coherence req, do nothing
658        return true;
659    }
660}
661
662void
663TimingSimpleCPU::DcachePort::DTickEvent::process()
664{
665    cpu->completeDataAccess(pkt);
666}
667
668void
669TimingSimpleCPU::DcachePort::recvRetry()
670{
671    // we shouldn't get a retry unless we have a packet that we're
672    // waiting to transmit
673    assert(cpu->dcache_pkt != NULL);
674    assert(cpu->_status == DcacheRetry);
675    PacketPtr tmp = cpu->dcache_pkt;
676    if (sendTiming(tmp)) {
677        cpu->_status = DcacheWaitResponse;
678        // memory system takes ownership of packet
679        cpu->dcache_pkt = NULL;
680    }
681}
682
683
684////////////////////////////////////////////////////////////////////////
685//
686//  TimingSimpleCPU Simulation Object
687//
688BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
689
690    Param<Counter> max_insts_any_thread;
691    Param<Counter> max_insts_all_threads;
692    Param<Counter> max_loads_any_thread;
693    Param<Counter> max_loads_all_threads;
694    Param<Tick> progress_interval;
695    SimObjectParam<System *> system;
696    Param<int> cpu_id;
697
698#if FULL_SYSTEM
699    SimObjectParam<TheISA::ITB *> itb;
700    SimObjectParam<TheISA::DTB *> dtb;
701    Param<Tick> profile;
702
703    Param<bool> do_quiesce;
704    Param<bool> do_checkpoint_insts;
705    Param<bool> do_statistics_insts;
706#else
707    SimObjectParam<Process *> workload;
708#endif // FULL_SYSTEM
709
710    Param<int> clock;
711    Param<int> phase;
712
713    Param<bool> defer_registration;
714    Param<int> width;
715    Param<bool> function_trace;
716    Param<Tick> function_trace_start;
717    Param<bool> simulate_stalls;
718
719END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
720
721BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
722
723    INIT_PARAM(max_insts_any_thread,
724               "terminate when any thread reaches this inst count"),
725    INIT_PARAM(max_insts_all_threads,
726               "terminate when all threads have reached this inst count"),
727    INIT_PARAM(max_loads_any_thread,
728               "terminate when any thread reaches this load count"),
729    INIT_PARAM(max_loads_all_threads,
730               "terminate when all threads have reached this load count"),
731    INIT_PARAM(progress_interval, "Progress interval"),
732    INIT_PARAM(system, "system object"),
733    INIT_PARAM(cpu_id, "processor ID"),
734
735#if FULL_SYSTEM
736    INIT_PARAM(itb, "Instruction TLB"),
737    INIT_PARAM(dtb, "Data TLB"),
738    INIT_PARAM(profile, ""),
739    INIT_PARAM(do_quiesce, ""),
740    INIT_PARAM(do_checkpoint_insts, ""),
741    INIT_PARAM(do_statistics_insts, ""),
742#else
743    INIT_PARAM(workload, "processes to run"),
744#endif // FULL_SYSTEM
745
746    INIT_PARAM(clock, "clock speed"),
747    INIT_PARAM_DFLT(phase, "clock phase", 0),
748    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
749    INIT_PARAM(width, "cpu width"),
750    INIT_PARAM(function_trace, "Enable function trace"),
751    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
752    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
753
754END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
755
756
757CREATE_SIM_OBJECT(TimingSimpleCPU)
758{
759    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
760    params->name = getInstanceName();
761    params->numberOfThreads = 1;
762    params->max_insts_any_thread = max_insts_any_thread;
763    params->max_insts_all_threads = max_insts_all_threads;
764    params->max_loads_any_thread = max_loads_any_thread;
765    params->max_loads_all_threads = max_loads_all_threads;
766    params->progress_interval = progress_interval;
767    params->deferRegistration = defer_registration;
768    params->clock = clock;
769    params->phase = phase;
770    params->functionTrace = function_trace;
771    params->functionTraceStart = function_trace_start;
772    params->system = system;
773    params->cpu_id = cpu_id;
774
775#if FULL_SYSTEM
776    params->itb = itb;
777    params->dtb = dtb;
778    params->profile = profile;
779    params->do_quiesce = do_quiesce;
780    params->do_checkpoint_insts = do_checkpoint_insts;
781    params->do_statistics_insts = do_statistics_insts;
782#else
783    params->process = workload;
784#endif
785
786    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
787    return cpu;
788}
789
790REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
791
792