timing.cc revision 3686
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet.hh"
36#include "mem/packet_access.hh"
37#include "sim/builder.hh"
38#include "sim/system.hh"
39
40using namespace std;
41using namespace TheISA;
42
43Port *
44TimingSimpleCPU::getPort(const std::string &if_name, int idx)
45{
46    if (if_name == "dcache_port")
47        return &dcachePort;
48    else if (if_name == "icache_port")
49        return &icachePort;
50    else
51        panic("No Such Port\n");
52}
53
54void
55TimingSimpleCPU::init()
56{
57    BaseCPU::init();
58#if FULL_SYSTEM
59    for (int i = 0; i < threadContexts.size(); ++i) {
60        ThreadContext *tc = threadContexts[i];
61
62        // initialize CPU, including PC
63        TheISA::initCPU(tc, tc->readCpuId());
64    }
65#endif
66}
67
68Tick
69TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
70{
71    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
72    return curTick;
73}
74
75void
76TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
77{
78    //No internal storage to update, jusst return
79    return;
80}
81
82void
83TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
84{
85    if (status == RangeChange) {
86        if (!snoopRangeSent) {
87            snoopRangeSent = true;
88            sendStatusChange(Port::RangeChange);
89        }
90        return;
91    }
92
93    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
94}
95
96
97void
98TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
99{
100    pkt = _pkt;
101    Event::schedule(t);
102}
103
104TimingSimpleCPU::TimingSimpleCPU(Params *p)
105    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
106      cpu_id(p->cpu_id)
107{
108    _status = Idle;
109
110    icachePort.snoopRangeSent = false;
111    dcachePort.snoopRangeSent = false;
112
113    ifetch_pkt = dcache_pkt = NULL;
114    drainEvent = NULL;
115    fetchEvent = NULL;
116    previousTick = 0;
117    changeState(SimObject::Running);
118}
119
120
121TimingSimpleCPU::~TimingSimpleCPU()
122{
123}
124
125void
126TimingSimpleCPU::serialize(ostream &os)
127{
128    SimObject::State so_state = SimObject::getState();
129    SERIALIZE_ENUM(so_state);
130    BaseSimpleCPU::serialize(os);
131}
132
133void
134TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
135{
136    SimObject::State so_state;
137    UNSERIALIZE_ENUM(so_state);
138    BaseSimpleCPU::unserialize(cp, section);
139}
140
141unsigned int
142TimingSimpleCPU::drain(Event *drain_event)
143{
144    // TimingSimpleCPU is ready to drain if it's not waiting for
145    // an access to complete.
146    if (status() == Idle || status() == Running || status() == SwitchedOut) {
147        changeState(SimObject::Drained);
148        return 0;
149    } else {
150        changeState(SimObject::Draining);
151        drainEvent = drain_event;
152        return 1;
153    }
154}
155
156void
157TimingSimpleCPU::resume()
158{
159    if (_status != SwitchedOut && _status != Idle) {
160        assert(system->getMemoryMode() == System::Timing);
161
162        // Delete the old event if it existed.
163        if (fetchEvent) {
164            if (fetchEvent->scheduled())
165                fetchEvent->deschedule();
166
167            delete fetchEvent;
168        }
169
170        fetchEvent =
171            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
172        fetchEvent->schedule(nextCycle());
173    }
174
175    changeState(SimObject::Running);
176    previousTick = curTick;
177}
178
179void
180TimingSimpleCPU::switchOut()
181{
182    assert(status() == Running || status() == Idle);
183    _status = SwitchedOut;
184    numCycles += curTick - previousTick;
185
186    // If we've been scheduled to resume but are then told to switch out,
187    // we'll need to cancel it.
188    if (fetchEvent && fetchEvent->scheduled())
189        fetchEvent->deschedule();
190}
191
192
193void
194TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
195{
196    BaseCPU::takeOverFrom(oldCPU);
197
198    // if any of this CPU's ThreadContexts are active, mark the CPU as
199    // running and schedule its tick event.
200    for (int i = 0; i < threadContexts.size(); ++i) {
201        ThreadContext *tc = threadContexts[i];
202        if (tc->status() == ThreadContext::Active && _status != Running) {
203            _status = Running;
204            break;
205        }
206    }
207
208    if (_status != Running) {
209        _status = Idle;
210    }
211
212    Port *peer;
213    if (icachePort.getPeer() == NULL) {
214        peer = oldCPU->getPort("icache_port")->getPeer();
215        icachePort.setPeer(peer);
216    } else {
217        peer = icachePort.getPeer();
218    }
219    peer->setPeer(&icachePort);
220
221    if (dcachePort.getPeer() == NULL) {
222        peer = oldCPU->getPort("dcache_port")->getPeer();
223        dcachePort.setPeer(peer);
224    } else {
225        peer = dcachePort.getPeer();
226    }
227    peer->setPeer(&dcachePort);
228}
229
230
231void
232TimingSimpleCPU::activateContext(int thread_num, int delay)
233{
234    assert(thread_num == 0);
235    assert(thread);
236
237    assert(_status == Idle);
238
239    notIdleFraction++;
240    _status = Running;
241
242#if FULL_SYSTEM
243    // Connect the ThreadContext's memory ports (Functional/Virtual
244    // Ports)
245    tc->connectMemPorts();
246#endif
247
248    // kick things off by initiating the fetch of the next instruction
249    fetchEvent =
250        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
251    fetchEvent->schedule(nextCycle(curTick + cycles(delay)));
252}
253
254
255void
256TimingSimpleCPU::suspendContext(int thread_num)
257{
258    assert(thread_num == 0);
259    assert(thread);
260
261    assert(_status == Running);
262
263    // just change status to Idle... if status != Running,
264    // completeInst() will not initiate fetch of next instruction.
265
266    notIdleFraction--;
267    _status = Idle;
268}
269
270
271template <class T>
272Fault
273TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
274{
275    Request *req =
276        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
277                    cpu_id, /* thread ID */ 0);
278
279    if (traceData) {
280        traceData->setAddr(req->getVaddr());
281    }
282
283   // translate to physical address
284    Fault fault = thread->translateDataReadReq(req);
285
286    // Now do the access.
287    if (fault == NoFault) {
288        PacketPtr pkt =
289            new Packet(req, Packet::ReadReq, Packet::Broadcast);
290        pkt->dataDynamic<T>(new T);
291
292        if (!dcachePort.sendTiming(pkt)) {
293            _status = DcacheRetry;
294            dcache_pkt = pkt;
295        } else {
296            _status = DcacheWaitResponse;
297            // memory system takes ownership of packet
298            dcache_pkt = NULL;
299        }
300    } else {
301        delete req;
302    }
303
304    // This will need a new way to tell if it has a dcache attached.
305    if (req->isUncacheable())
306        recordEvent("Uncached Read");
307
308    return fault;
309}
310
311#ifndef DOXYGEN_SHOULD_SKIP_THIS
312
313template
314Fault
315TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
316
317template
318Fault
319TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
320
321template
322Fault
323TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
324
325template
326Fault
327TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
328
329#endif //DOXYGEN_SHOULD_SKIP_THIS
330
331template<>
332Fault
333TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
334{
335    return read(addr, *(uint64_t*)&data, flags);
336}
337
338template<>
339Fault
340TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
341{
342    return read(addr, *(uint32_t*)&data, flags);
343}
344
345
346template<>
347Fault
348TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
349{
350    return read(addr, (uint32_t&)data, flags);
351}
352
353
354template <class T>
355Fault
356TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
357{
358    Request *req =
359        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
360                    cpu_id, /* thread ID */ 0);
361
362    // translate to physical address
363    Fault fault = thread->translateDataWriteReq(req);
364
365    // Now do the access.
366    if (fault == NoFault) {
367        assert(dcache_pkt == NULL);
368        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
369        dcache_pkt->allocate();
370        dcache_pkt->set(data);
371
372        bool do_access = true;  // flag to suppress cache access
373
374        if (req->isLocked()) {
375            do_access = TheISA::handleLockedWrite(thread, req);
376        }
377
378        if (do_access) {
379            if (!dcachePort.sendTiming(dcache_pkt)) {
380                _status = DcacheRetry;
381            } else {
382                _status = DcacheWaitResponse;
383                // memory system takes ownership of packet
384                dcache_pkt = NULL;
385            }
386        }
387    } else {
388        delete req;
389    }
390
391    // This will need a new way to tell if it's hooked up to a cache or not.
392    if (req->isUncacheable())
393        recordEvent("Uncached Write");
394
395    // If the write needs to have a fault on the access, consider calling
396    // changeStatus() and changing it to "bad addr write" or something.
397    return fault;
398}
399
400
401#ifndef DOXYGEN_SHOULD_SKIP_THIS
402template
403Fault
404TimingSimpleCPU::write(uint64_t data, Addr addr,
405                       unsigned flags, uint64_t *res);
406
407template
408Fault
409TimingSimpleCPU::write(uint32_t data, Addr addr,
410                       unsigned flags, uint64_t *res);
411
412template
413Fault
414TimingSimpleCPU::write(uint16_t data, Addr addr,
415                       unsigned flags, uint64_t *res);
416
417template
418Fault
419TimingSimpleCPU::write(uint8_t data, Addr addr,
420                       unsigned flags, uint64_t *res);
421
422#endif //DOXYGEN_SHOULD_SKIP_THIS
423
424template<>
425Fault
426TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
427{
428    return write(*(uint64_t*)&data, addr, flags, res);
429}
430
431template<>
432Fault
433TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
434{
435    return write(*(uint32_t*)&data, addr, flags, res);
436}
437
438
439template<>
440Fault
441TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
442{
443    return write((uint32_t)data, addr, flags, res);
444}
445
446
447void
448TimingSimpleCPU::fetch()
449{
450    if (!curStaticInst || !curStaticInst->isDelayedCommit())
451        checkForInterrupts();
452
453    Request *ifetch_req = new Request();
454    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
455    Fault fault = setupFetchRequest(ifetch_req);
456
457    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
458    ifetch_pkt->dataStatic(&inst);
459
460    if (fault == NoFault) {
461        if (!icachePort.sendTiming(ifetch_pkt)) {
462            // Need to wait for retry
463            _status = IcacheRetry;
464        } else {
465            // Need to wait for cache to respond
466            _status = IcacheWaitResponse;
467            // ownership of packet transferred to memory system
468            ifetch_pkt = NULL;
469        }
470    } else {
471        delete ifetch_req;
472        delete ifetch_pkt;
473        // fetch fault: advance directly to next instruction (fault handler)
474        advanceInst(fault);
475    }
476
477    numCycles += curTick - previousTick;
478    previousTick = curTick;
479}
480
481
482void
483TimingSimpleCPU::advanceInst(Fault fault)
484{
485    advancePC(fault);
486
487    if (_status == Running) {
488        // kick off fetch of next instruction... callback from icache
489        // response will cause that instruction to be executed,
490        // keeping the CPU running.
491        fetch();
492    }
493}
494
495
496void
497TimingSimpleCPU::completeIfetch(PacketPtr pkt)
498{
499    // received a response from the icache: execute the received
500    // instruction
501    assert(pkt->result == Packet::Success);
502    assert(_status == IcacheWaitResponse);
503
504    _status = Running;
505
506    numCycles += curTick - previousTick;
507    previousTick = curTick;
508
509    if (getState() == SimObject::Draining) {
510        delete pkt->req;
511        delete pkt;
512
513        completeDrain();
514        return;
515    }
516
517    preExecute();
518    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
519        // load or store: just send to dcache
520        Fault fault = curStaticInst->initiateAcc(this, traceData);
521        if (_status != Running) {
522            // instruction will complete in dcache response callback
523            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
524            assert(fault == NoFault);
525        } else {
526            if (fault == NoFault) {
527                // early fail on store conditional: complete now
528                assert(dcache_pkt != NULL);
529                fault = curStaticInst->completeAcc(dcache_pkt, this,
530                                                   traceData);
531                delete dcache_pkt->req;
532                delete dcache_pkt;
533                dcache_pkt = NULL;
534            }
535            postExecute();
536            advanceInst(fault);
537        }
538    } else {
539        // non-memory instruction: execute completely now
540        Fault fault = curStaticInst->execute(this, traceData);
541        postExecute();
542        advanceInst(fault);
543    }
544
545    delete pkt->req;
546    delete pkt;
547}
548
549void
550TimingSimpleCPU::IcachePort::ITickEvent::process()
551{
552    cpu->completeIfetch(pkt);
553}
554
555bool
556TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt)
557{
558    if (pkt->isResponse()) {
559        // delay processing of returned data until next CPU clock edge
560        Tick mem_time = pkt->req->getTime();
561        Tick next_tick = cpu->nextCycle(mem_time);
562
563        if (next_tick == curTick)
564            cpu->completeIfetch(pkt);
565        else
566            tickEvent.schedule(pkt, next_tick);
567
568        return true;
569    }
570    else {
571        //Snooping a Coherence Request, do nothing
572        return true;
573    }
574}
575
576void
577TimingSimpleCPU::IcachePort::recvRetry()
578{
579    // we shouldn't get a retry unless we have a packet that we're
580    // waiting to transmit
581    assert(cpu->ifetch_pkt != NULL);
582    assert(cpu->_status == IcacheRetry);
583    PacketPtr tmp = cpu->ifetch_pkt;
584    if (sendTiming(tmp)) {
585        cpu->_status = IcacheWaitResponse;
586        cpu->ifetch_pkt = NULL;
587    }
588}
589
590void
591TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
592{
593    // received a response from the dcache: complete the load or store
594    // instruction
595    assert(pkt->result == Packet::Success);
596    assert(_status == DcacheWaitResponse);
597    _status = Running;
598
599    numCycles += curTick - previousTick;
600    previousTick = curTick;
601
602    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
603
604    if (pkt->isRead() && pkt->req->isLocked()) {
605        TheISA::handleLockedRead(thread, pkt->req);
606    }
607
608    delete pkt->req;
609    delete pkt;
610
611    postExecute();
612
613    if (getState() == SimObject::Draining) {
614        advancePC(fault);
615        completeDrain();
616
617        return;
618    }
619
620    advanceInst(fault);
621}
622
623
624void
625TimingSimpleCPU::completeDrain()
626{
627    DPRINTF(Config, "Done draining\n");
628    changeState(SimObject::Drained);
629    drainEvent->process();
630}
631
632bool
633TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt)
634{
635    if (pkt->isResponse()) {
636        // delay processing of returned data until next CPU clock edge
637        Tick mem_time = pkt->req->getTime();
638        Tick next_tick = cpu->nextCycle(mem_time);
639
640        if (next_tick == curTick)
641            cpu->completeDataAccess(pkt);
642        else
643            tickEvent.schedule(pkt, next_tick);
644
645        return true;
646    }
647    else {
648        //Snooping a coherence req, do nothing
649        return true;
650    }
651}
652
653void
654TimingSimpleCPU::DcachePort::DTickEvent::process()
655{
656    cpu->completeDataAccess(pkt);
657}
658
659void
660TimingSimpleCPU::DcachePort::recvRetry()
661{
662    // we shouldn't get a retry unless we have a packet that we're
663    // waiting to transmit
664    assert(cpu->dcache_pkt != NULL);
665    assert(cpu->_status == DcacheRetry);
666    PacketPtr tmp = cpu->dcache_pkt;
667    if (sendTiming(tmp)) {
668        cpu->_status = DcacheWaitResponse;
669        // memory system takes ownership of packet
670        cpu->dcache_pkt = NULL;
671    }
672}
673
674
675////////////////////////////////////////////////////////////////////////
676//
677//  TimingSimpleCPU Simulation Object
678//
679BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
680
681    Param<Counter> max_insts_any_thread;
682    Param<Counter> max_insts_all_threads;
683    Param<Counter> max_loads_any_thread;
684    Param<Counter> max_loads_all_threads;
685    Param<Tick> progress_interval;
686    SimObjectParam<System *> system;
687    Param<int> cpu_id;
688
689#if FULL_SYSTEM
690    SimObjectParam<TheISA::ITB *> itb;
691    SimObjectParam<TheISA::DTB *> dtb;
692    Param<Tick> profile;
693
694    Param<bool> do_quiesce;
695    Param<bool> do_checkpoint_insts;
696    Param<bool> do_statistics_insts;
697#else
698    SimObjectParam<Process *> workload;
699#endif // FULL_SYSTEM
700
701    Param<int> clock;
702    Param<int> phase;
703
704    Param<bool> defer_registration;
705    Param<int> width;
706    Param<bool> function_trace;
707    Param<Tick> function_trace_start;
708    Param<bool> simulate_stalls;
709
710END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
711
712BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
713
714    INIT_PARAM(max_insts_any_thread,
715               "terminate when any thread reaches this inst count"),
716    INIT_PARAM(max_insts_all_threads,
717               "terminate when all threads have reached this inst count"),
718    INIT_PARAM(max_loads_any_thread,
719               "terminate when any thread reaches this load count"),
720    INIT_PARAM(max_loads_all_threads,
721               "terminate when all threads have reached this load count"),
722    INIT_PARAM(progress_interval, "Progress interval"),
723    INIT_PARAM(system, "system object"),
724    INIT_PARAM(cpu_id, "processor ID"),
725
726#if FULL_SYSTEM
727    INIT_PARAM(itb, "Instruction TLB"),
728    INIT_PARAM(dtb, "Data TLB"),
729    INIT_PARAM(profile, ""),
730    INIT_PARAM(do_quiesce, ""),
731    INIT_PARAM(do_checkpoint_insts, ""),
732    INIT_PARAM(do_statistics_insts, ""),
733#else
734    INIT_PARAM(workload, "processes to run"),
735#endif // FULL_SYSTEM
736
737    INIT_PARAM(clock, "clock speed"),
738    INIT_PARAM_DFLT(phase, "clock phase", 0),
739    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
740    INIT_PARAM(width, "cpu width"),
741    INIT_PARAM(function_trace, "Enable function trace"),
742    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
743    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
744
745END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
746
747
748CREATE_SIM_OBJECT(TimingSimpleCPU)
749{
750    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
751    params->name = getInstanceName();
752    params->numberOfThreads = 1;
753    params->max_insts_any_thread = max_insts_any_thread;
754    params->max_insts_all_threads = max_insts_all_threads;
755    params->max_loads_any_thread = max_loads_any_thread;
756    params->max_loads_all_threads = max_loads_all_threads;
757    params->progress_interval = progress_interval;
758    params->deferRegistration = defer_registration;
759    params->clock = clock;
760    params->phase = phase;
761    params->functionTrace = function_trace;
762    params->functionTraceStart = function_trace_start;
763    params->system = system;
764    params->cpu_id = cpu_id;
765
766#if FULL_SYSTEM
767    params->itb = itb;
768    params->dtb = dtb;
769    params->profile = profile;
770    params->do_quiesce = do_quiesce;
771    params->do_checkpoint_insts = do_checkpoint_insts;
772    params->do_statistics_insts = do_statistics_insts;
773#else
774    params->process = workload;
775#endif
776
777    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
778    return cpu;
779}
780
781REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
782
783