timing.cc revision 3230:e86a03911728
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45    if (if_name == "dcache_port")
46        return &dcachePort;
47    else if (if_name == "icache_port")
48        return &icachePort;
49    else
50        panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56    BaseCPU::init();
57#if FULL_SYSTEM
58    for (int i = 0; i < threadContexts.size(); ++i) {
59        ThreadContext *tc = threadContexts[i];
60
61        // initialize CPU, including PC
62        TheISA::initCPU(tc, tc->readCpuId());
63    }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71    return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77    //No internal storage to update, jusst return
78    return;
79}
80
81void
82TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
83{
84    if (status == RangeChange)
85        return;
86
87    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
88}
89
90
91void
92TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
93{
94    pkt = _pkt;
95    Event::schedule(t);
96}
97
98TimingSimpleCPU::TimingSimpleCPU(Params *p)
99    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
100      cpu_id(p->cpu_id)
101{
102    _status = Idle;
103    ifetch_pkt = dcache_pkt = NULL;
104    drainEvent = NULL;
105    fetchEvent = NULL;
106    previousTick = 0;
107    changeState(SimObject::Running);
108}
109
110
111TimingSimpleCPU::~TimingSimpleCPU()
112{
113}
114
115void
116TimingSimpleCPU::serialize(ostream &os)
117{
118    SimObject::State so_state = SimObject::getState();
119    SERIALIZE_ENUM(so_state);
120    BaseSimpleCPU::serialize(os);
121}
122
123void
124TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
125{
126    SimObject::State so_state;
127    UNSERIALIZE_ENUM(so_state);
128    BaseSimpleCPU::unserialize(cp, section);
129}
130
131unsigned int
132TimingSimpleCPU::drain(Event *drain_event)
133{
134    // TimingSimpleCPU is ready to drain if it's not waiting for
135    // an access to complete.
136    if (status() == Idle || status() == Running || status() == SwitchedOut) {
137        changeState(SimObject::Drained);
138        return 0;
139    } else {
140        changeState(SimObject::Draining);
141        drainEvent = drain_event;
142        return 1;
143    }
144}
145
146void
147TimingSimpleCPU::resume()
148{
149    if (_status != SwitchedOut && _status != Idle) {
150        // Delete the old event if it existed.
151        if (fetchEvent) {
152            if (fetchEvent->scheduled())
153                fetchEvent->deschedule();
154
155            delete fetchEvent;
156        }
157
158        fetchEvent =
159            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
160        fetchEvent->schedule(curTick);
161    }
162
163    assert(system->getMemoryMode() == System::Timing);
164    changeState(SimObject::Running);
165    previousTick = curTick;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    assert(status() == Running || status() == Idle);
172    _status = SwitchedOut;
173    numCycles += curTick - previousTick;
174
175    // If we've been scheduled to resume but are then told to switch out,
176    // we'll need to cancel it.
177    if (fetchEvent && fetchEvent->scheduled())
178        fetchEvent->deschedule();
179}
180
181
182void
183TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
184{
185    BaseCPU::takeOverFrom(oldCPU);
186
187    // if any of this CPU's ThreadContexts are active, mark the CPU as
188    // running and schedule its tick event.
189    for (int i = 0; i < threadContexts.size(); ++i) {
190        ThreadContext *tc = threadContexts[i];
191        if (tc->status() == ThreadContext::Active && _status != Running) {
192            _status = Running;
193            break;
194        }
195    }
196
197    if (_status != Running) {
198        _status = Idle;
199    }
200
201    Port *peer;
202    if (icachePort.getPeer() == NULL) {
203        peer = oldCPU->getPort("icache_port")->getPeer();
204        icachePort.setPeer(peer);
205    } else {
206        peer = icachePort.getPeer();
207    }
208    peer->setPeer(&icachePort);
209
210    if (dcachePort.getPeer() == NULL) {
211        peer = oldCPU->getPort("dcache_port")->getPeer();
212        dcachePort.setPeer(peer);
213    } else {
214        peer = dcachePort.getPeer();
215    }
216    peer->setPeer(&dcachePort);
217}
218
219
220void
221TimingSimpleCPU::activateContext(int thread_num, int delay)
222{
223    assert(thread_num == 0);
224    assert(thread);
225
226    assert(_status == Idle);
227
228    notIdleFraction++;
229    _status = Running;
230    // kick things off by initiating the fetch of the next instruction
231    fetchEvent =
232        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
233    fetchEvent->schedule(curTick + cycles(delay));
234}
235
236
237void
238TimingSimpleCPU::suspendContext(int thread_num)
239{
240    assert(thread_num == 0);
241    assert(thread);
242
243    assert(_status == Running);
244
245    // just change status to Idle... if status != Running,
246    // completeInst() will not initiate fetch of next instruction.
247
248    notIdleFraction--;
249    _status = Idle;
250}
251
252
253template <class T>
254Fault
255TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
256{
257    Request *req =
258        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
259                    cpu_id, /* thread ID */ 0);
260
261    if (traceData) {
262        traceData->setAddr(req->getVaddr());
263    }
264
265   // translate to physical address
266    Fault fault = thread->translateDataReadReq(req);
267
268    // Now do the access.
269    if (fault == NoFault) {
270        Packet *pkt =
271            new Packet(req, Packet::ReadReq, Packet::Broadcast);
272        pkt->dataDynamic<T>(new T);
273
274        if (!dcachePort.sendTiming(pkt)) {
275            _status = DcacheRetry;
276            dcache_pkt = pkt;
277        } else {
278            _status = DcacheWaitResponse;
279            // memory system takes ownership of packet
280            dcache_pkt = NULL;
281        }
282    }
283
284    // This will need a new way to tell if it has a dcache attached.
285    if (req->isUncacheable())
286        recordEvent("Uncached Read");
287
288    return fault;
289}
290
291#ifndef DOXYGEN_SHOULD_SKIP_THIS
292
293template
294Fault
295TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
296
297template
298Fault
299TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
300
301template
302Fault
303TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
304
305template
306Fault
307TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
308
309#endif //DOXYGEN_SHOULD_SKIP_THIS
310
311template<>
312Fault
313TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
314{
315    return read(addr, *(uint64_t*)&data, flags);
316}
317
318template<>
319Fault
320TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
321{
322    return read(addr, *(uint32_t*)&data, flags);
323}
324
325
326template<>
327Fault
328TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
329{
330    return read(addr, (uint32_t&)data, flags);
331}
332
333
334template <class T>
335Fault
336TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
337{
338    Request *req =
339        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
340                    cpu_id, /* thread ID */ 0);
341
342    // translate to physical address
343    Fault fault = thread->translateDataWriteReq(req);
344
345    // Now do the access.
346    if (fault == NoFault) {
347        assert(dcache_pkt == NULL);
348        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
349        dcache_pkt->allocate();
350        dcache_pkt->set(data);
351
352        bool do_access = true;  // flag to suppress cache access
353
354        if (req->isLocked()) {
355            do_access = TheISA::handleLockedWrite(thread, req);
356        }
357
358        if (do_access) {
359            if (!dcachePort.sendTiming(dcache_pkt)) {
360                _status = DcacheRetry;
361            } else {
362                _status = DcacheWaitResponse;
363                // memory system takes ownership of packet
364                dcache_pkt = NULL;
365            }
366        }
367    }
368
369    // This will need a new way to tell if it's hooked up to a cache or not.
370    if (req->isUncacheable())
371        recordEvent("Uncached Write");
372
373    // If the write needs to have a fault on the access, consider calling
374    // changeStatus() and changing it to "bad addr write" or something.
375    return fault;
376}
377
378
379#ifndef DOXYGEN_SHOULD_SKIP_THIS
380template
381Fault
382TimingSimpleCPU::write(uint64_t data, Addr addr,
383                       unsigned flags, uint64_t *res);
384
385template
386Fault
387TimingSimpleCPU::write(uint32_t data, Addr addr,
388                       unsigned flags, uint64_t *res);
389
390template
391Fault
392TimingSimpleCPU::write(uint16_t data, Addr addr,
393                       unsigned flags, uint64_t *res);
394
395template
396Fault
397TimingSimpleCPU::write(uint8_t data, Addr addr,
398                       unsigned flags, uint64_t *res);
399
400#endif //DOXYGEN_SHOULD_SKIP_THIS
401
402template<>
403Fault
404TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
405{
406    return write(*(uint64_t*)&data, addr, flags, res);
407}
408
409template<>
410Fault
411TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
412{
413    return write(*(uint32_t*)&data, addr, flags, res);
414}
415
416
417template<>
418Fault
419TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
420{
421    return write((uint32_t)data, addr, flags, res);
422}
423
424
425void
426TimingSimpleCPU::fetch()
427{
428    checkForInterrupts();
429
430    Request *ifetch_req = new Request();
431    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
432    Fault fault = setupFetchRequest(ifetch_req);
433
434    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
435    ifetch_pkt->dataStatic(&inst);
436
437    if (fault == NoFault) {
438        if (!icachePort.sendTiming(ifetch_pkt)) {
439            // Need to wait for retry
440            _status = IcacheRetry;
441        } else {
442            // Need to wait for cache to respond
443            _status = IcacheWaitResponse;
444            // ownership of packet transferred to memory system
445            ifetch_pkt = NULL;
446        }
447    } else {
448        // fetch fault: advance directly to next instruction (fault handler)
449        advanceInst(fault);
450    }
451
452    numCycles += curTick - previousTick;
453    previousTick = curTick;
454}
455
456
457void
458TimingSimpleCPU::advanceInst(Fault fault)
459{
460    advancePC(fault);
461
462    if (_status == Running) {
463        // kick off fetch of next instruction... callback from icache
464        // response will cause that instruction to be executed,
465        // keeping the CPU running.
466        fetch();
467    }
468}
469
470
471void
472TimingSimpleCPU::completeIfetch(Packet *pkt)
473{
474    // received a response from the icache: execute the received
475    // instruction
476    assert(pkt->result == Packet::Success);
477    assert(_status == IcacheWaitResponse);
478
479    _status = Running;
480
481    delete pkt->req;
482    delete pkt;
483
484    numCycles += curTick - previousTick;
485    previousTick = curTick;
486
487    if (getState() == SimObject::Draining) {
488        completeDrain();
489        return;
490    }
491
492    preExecute();
493    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
494        // load or store: just send to dcache
495        Fault fault = curStaticInst->initiateAcc(this, traceData);
496        if (_status != Running) {
497            // instruction will complete in dcache response callback
498            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
499            assert(fault == NoFault);
500        } else {
501            if (fault == NoFault) {
502                // early fail on store conditional: complete now
503                assert(dcache_pkt != NULL);
504                fault = curStaticInst->completeAcc(dcache_pkt, this,
505                                                   traceData);
506                delete dcache_pkt->req;
507                delete dcache_pkt;
508                dcache_pkt = NULL;
509            }
510            postExecute();
511            advanceInst(fault);
512        }
513    } else {
514        // non-memory instruction: execute completely now
515        Fault fault = curStaticInst->execute(this, traceData);
516        postExecute();
517        advanceInst(fault);
518    }
519}
520
521void
522TimingSimpleCPU::IcachePort::ITickEvent::process()
523{
524    cpu->completeIfetch(pkt);
525}
526
527bool
528TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
529{
530    // delay processing of returned data until next CPU clock edge
531    Tick time = pkt->req->getTime();
532    while (time < curTick)
533        time += lat;
534
535    if (time == curTick)
536        cpu->completeIfetch(pkt);
537    else
538        tickEvent.schedule(pkt, time);
539
540    return true;
541}
542
543void
544TimingSimpleCPU::IcachePort::recvRetry()
545{
546    // we shouldn't get a retry unless we have a packet that we're
547    // waiting to transmit
548    assert(cpu->ifetch_pkt != NULL);
549    assert(cpu->_status == IcacheRetry);
550    Packet *tmp = cpu->ifetch_pkt;
551    if (sendTiming(tmp)) {
552        cpu->_status = IcacheWaitResponse;
553        cpu->ifetch_pkt = NULL;
554    }
555}
556
557void
558TimingSimpleCPU::completeDataAccess(Packet *pkt)
559{
560    // received a response from the dcache: complete the load or store
561    // instruction
562    assert(pkt->result == Packet::Success);
563    assert(_status == DcacheWaitResponse);
564    _status = Running;
565
566    numCycles += curTick - previousTick;
567    previousTick = curTick;
568
569    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
570
571    if (pkt->isRead() && pkt->req->isLocked()) {
572        TheISA::handleLockedRead(thread, pkt->req);
573    }
574
575    delete pkt->req;
576    delete pkt;
577
578    postExecute();
579
580    if (getState() == SimObject::Draining) {
581        advancePC(fault);
582        completeDrain();
583
584        return;
585    }
586
587    advanceInst(fault);
588}
589
590
591void
592TimingSimpleCPU::completeDrain()
593{
594    DPRINTF(Config, "Done draining\n");
595    changeState(SimObject::Drained);
596    drainEvent->process();
597}
598
599bool
600TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
601{
602    // delay processing of returned data until next CPU clock edge
603    Tick time = pkt->req->getTime();
604    while (time < curTick)
605        time += lat;
606
607    if (time == curTick)
608        cpu->completeDataAccess(pkt);
609    else
610        tickEvent.schedule(pkt, time);
611
612    return true;
613}
614
615void
616TimingSimpleCPU::DcachePort::DTickEvent::process()
617{
618    cpu->completeDataAccess(pkt);
619}
620
621void
622TimingSimpleCPU::DcachePort::recvRetry()
623{
624    // we shouldn't get a retry unless we have a packet that we're
625    // waiting to transmit
626    assert(cpu->dcache_pkt != NULL);
627    assert(cpu->_status == DcacheRetry);
628    Packet *tmp = cpu->dcache_pkt;
629    if (sendTiming(tmp)) {
630        cpu->_status = DcacheWaitResponse;
631        // memory system takes ownership of packet
632        cpu->dcache_pkt = NULL;
633    }
634}
635
636
637////////////////////////////////////////////////////////////////////////
638//
639//  TimingSimpleCPU Simulation Object
640//
641BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
642
643    Param<Counter> max_insts_any_thread;
644    Param<Counter> max_insts_all_threads;
645    Param<Counter> max_loads_any_thread;
646    Param<Counter> max_loads_all_threads;
647    Param<Tick> progress_interval;
648    SimObjectParam<MemObject *> mem;
649    SimObjectParam<System *> system;
650    Param<int> cpu_id;
651
652#if FULL_SYSTEM
653    SimObjectParam<AlphaITB *> itb;
654    SimObjectParam<AlphaDTB *> dtb;
655    Param<Tick> profile;
656#else
657    SimObjectParam<Process *> workload;
658#endif // FULL_SYSTEM
659
660    Param<int> clock;
661
662    Param<bool> defer_registration;
663    Param<int> width;
664    Param<bool> function_trace;
665    Param<Tick> function_trace_start;
666    Param<bool> simulate_stalls;
667
668END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
669
670BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
671
672    INIT_PARAM(max_insts_any_thread,
673               "terminate when any thread reaches this inst count"),
674    INIT_PARAM(max_insts_all_threads,
675               "terminate when all threads have reached this inst count"),
676    INIT_PARAM(max_loads_any_thread,
677               "terminate when any thread reaches this load count"),
678    INIT_PARAM(max_loads_all_threads,
679               "terminate when all threads have reached this load count"),
680    INIT_PARAM(progress_interval, "Progress interval"),
681    INIT_PARAM(mem, "memory"),
682    INIT_PARAM(system, "system object"),
683    INIT_PARAM(cpu_id, "processor ID"),
684
685#if FULL_SYSTEM
686    INIT_PARAM(itb, "Instruction TLB"),
687    INIT_PARAM(dtb, "Data TLB"),
688    INIT_PARAM(profile, ""),
689#else
690    INIT_PARAM(workload, "processes to run"),
691#endif // FULL_SYSTEM
692
693    INIT_PARAM(clock, "clock speed"),
694    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
695    INIT_PARAM(width, "cpu width"),
696    INIT_PARAM(function_trace, "Enable function trace"),
697    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
698    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
699
700END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
701
702
703CREATE_SIM_OBJECT(TimingSimpleCPU)
704{
705    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
706    params->name = getInstanceName();
707    params->numberOfThreads = 1;
708    params->max_insts_any_thread = max_insts_any_thread;
709    params->max_insts_all_threads = max_insts_all_threads;
710    params->max_loads_any_thread = max_loads_any_thread;
711    params->max_loads_all_threads = max_loads_all_threads;
712    params->progress_interval = progress_interval;
713    params->deferRegistration = defer_registration;
714    params->clock = clock;
715    params->functionTrace = function_trace;
716    params->functionTraceStart = function_trace_start;
717    params->mem = mem;
718    params->system = system;
719    params->cpu_id = cpu_id;
720
721#if FULL_SYSTEM
722    params->itb = itb;
723    params->dtb = dtb;
724    params->profile = profile;
725#else
726    params->process = workload;
727#endif
728
729    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
730    return cpu;
731}
732
733REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
734
735