timing.cc revision 3227
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36#include "sim/system.hh"
37
38using namespace std;
39using namespace TheISA;
40
41Port *
42TimingSimpleCPU::getPort(const std::string &if_name, int idx)
43{
44    if (if_name == "dcache_port")
45        return &dcachePort;
46    else if (if_name == "icache_port")
47        return &icachePort;
48    else
49        panic("No Such Port\n");
50}
51
52void
53TimingSimpleCPU::init()
54{
55    BaseCPU::init();
56#if FULL_SYSTEM
57    for (int i = 0; i < threadContexts.size(); ++i) {
58        ThreadContext *tc = threadContexts[i];
59
60        // initialize CPU, including PC
61        TheISA::initCPU(tc, tc->readCpuId());
62    }
63#endif
64}
65
66Tick
67TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
68{
69    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
70    return curTick;
71}
72
73void
74TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
75{
76    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
77}
78
79void
80TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
81{
82    if (status == RangeChange)
83        return;
84
85    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
86}
87
88
89void
90TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
91{
92    pkt = _pkt;
93    Event::schedule(t);
94}
95
96TimingSimpleCPU::TimingSimpleCPU(Params *p)
97    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock)
98{
99    _status = Idle;
100    ifetch_pkt = dcache_pkt = NULL;
101    drainEvent = NULL;
102    fetchEvent = NULL;
103    previousTick = 0;
104    changeState(SimObject::Running);
105}
106
107
108TimingSimpleCPU::~TimingSimpleCPU()
109{
110}
111
112void
113TimingSimpleCPU::serialize(ostream &os)
114{
115    SimObject::State so_state = SimObject::getState();
116    SERIALIZE_ENUM(so_state);
117    BaseSimpleCPU::serialize(os);
118}
119
120void
121TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
122{
123    SimObject::State so_state;
124    UNSERIALIZE_ENUM(so_state);
125    BaseSimpleCPU::unserialize(cp, section);
126}
127
128unsigned int
129TimingSimpleCPU::drain(Event *drain_event)
130{
131    // TimingSimpleCPU is ready to drain if it's not waiting for
132    // an access to complete.
133    if (status() == Idle || status() == Running || status() == SwitchedOut) {
134        changeState(SimObject::Drained);
135        return 0;
136    } else {
137        changeState(SimObject::Draining);
138        drainEvent = drain_event;
139        return 1;
140    }
141}
142
143void
144TimingSimpleCPU::resume()
145{
146    if (_status != SwitchedOut && _status != Idle) {
147        // Delete the old event if it existed.
148        if (fetchEvent) {
149            if (fetchEvent->scheduled())
150                fetchEvent->deschedule();
151
152            delete fetchEvent;
153        }
154
155        fetchEvent =
156            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
157        fetchEvent->schedule(curTick);
158    }
159
160    assert(system->getMemoryMode() == System::Timing);
161    changeState(SimObject::Running);
162    previousTick = curTick;
163}
164
165void
166TimingSimpleCPU::switchOut()
167{
168    assert(status() == Running || status() == Idle);
169    _status = SwitchedOut;
170    numCycles += curTick - previousTick;
171
172    // If we've been scheduled to resume but are then told to switch out,
173    // we'll need to cancel it.
174    if (fetchEvent && fetchEvent->scheduled())
175        fetchEvent->deschedule();
176}
177
178
179void
180TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
181{
182    BaseCPU::takeOverFrom(oldCPU);
183
184    // if any of this CPU's ThreadContexts are active, mark the CPU as
185    // running and schedule its tick event.
186    for (int i = 0; i < threadContexts.size(); ++i) {
187        ThreadContext *tc = threadContexts[i];
188        if (tc->status() == ThreadContext::Active && _status != Running) {
189            _status = Running;
190            break;
191        }
192    }
193
194    if (_status != Running) {
195        _status = Idle;
196    }
197
198    Port *peer;
199    if (icachePort.getPeer() == NULL) {
200        peer = oldCPU->getPort("icache_port")->getPeer();
201        icachePort.setPeer(peer);
202    } else {
203        peer = icachePort.getPeer();
204    }
205    peer->setPeer(&icachePort);
206
207    if (dcachePort.getPeer() == NULL) {
208        peer = oldCPU->getPort("dcache_port")->getPeer();
209        dcachePort.setPeer(peer);
210    } else {
211        peer = dcachePort.getPeer();
212    }
213    peer->setPeer(&dcachePort);
214}
215
216
217void
218TimingSimpleCPU::activateContext(int thread_num, int delay)
219{
220    assert(thread_num == 0);
221    assert(thread);
222
223    assert(_status == Idle);
224
225    notIdleFraction++;
226    _status = Running;
227    // kick things off by initiating the fetch of the next instruction
228    fetchEvent =
229        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
230    fetchEvent->schedule(curTick + cycles(delay));
231}
232
233
234void
235TimingSimpleCPU::suspendContext(int thread_num)
236{
237    assert(thread_num == 0);
238    assert(thread);
239
240    assert(_status == Running);
241
242    // just change status to Idle... if status != Running,
243    // completeInst() will not initiate fetch of next instruction.
244
245    notIdleFraction--;
246    _status = Idle;
247}
248
249
250template <class T>
251Fault
252TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
253{
254    // need to fill in CPU & thread IDs here
255    Request *data_read_req = new Request();
256    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
257    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
258
259    if (traceData) {
260        traceData->setAddr(data_read_req->getVaddr());
261    }
262
263   // translate to physical address
264    Fault fault = thread->translateDataReadReq(data_read_req);
265
266    // Now do the access.
267    if (fault == NoFault) {
268        Packet *data_read_pkt =
269            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
270        data_read_pkt->dataDynamic<T>(new T);
271
272        if (!dcachePort.sendTiming(data_read_pkt)) {
273            _status = DcacheRetry;
274            dcache_pkt = data_read_pkt;
275        } else {
276            _status = DcacheWaitResponse;
277            dcache_pkt = NULL;
278        }
279    }
280
281    // This will need a new way to tell if it has a dcache attached.
282    if (data_read_req->getFlags() & UNCACHEABLE)
283        recordEvent("Uncached Read");
284
285    return fault;
286}
287
288#ifndef DOXYGEN_SHOULD_SKIP_THIS
289
290template
291Fault
292TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
293
294template
295Fault
296TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
297
298template
299Fault
300TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
301
302template
303Fault
304TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
305
306#endif //DOXYGEN_SHOULD_SKIP_THIS
307
308template<>
309Fault
310TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
311{
312    return read(addr, *(uint64_t*)&data, flags);
313}
314
315template<>
316Fault
317TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
318{
319    return read(addr, *(uint32_t*)&data, flags);
320}
321
322
323template<>
324Fault
325TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
326{
327    return read(addr, (uint32_t&)data, flags);
328}
329
330
331template <class T>
332Fault
333TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
334{
335    // need to fill in CPU & thread IDs here
336    Request *data_write_req = new Request();
337    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
338    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
339
340    // translate to physical address
341    Fault fault = thread->translateDataWriteReq(data_write_req);
342    // Now do the access.
343    if (fault == NoFault) {
344        Packet *data_write_pkt =
345            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
346        data_write_pkt->allocate();
347        data_write_pkt->set(data);
348
349        if (!dcachePort.sendTiming(data_write_pkt)) {
350            _status = DcacheRetry;
351            dcache_pkt = data_write_pkt;
352        } else {
353            _status = DcacheWaitResponse;
354            dcache_pkt = NULL;
355        }
356    }
357
358    // This will need a new way to tell if it's hooked up to a cache or not.
359    if (data_write_req->getFlags() & UNCACHEABLE)
360        recordEvent("Uncached Write");
361
362    // If the write needs to have a fault on the access, consider calling
363    // changeStatus() and changing it to "bad addr write" or something.
364    return fault;
365}
366
367
368#ifndef DOXYGEN_SHOULD_SKIP_THIS
369template
370Fault
371TimingSimpleCPU::write(uint64_t data, Addr addr,
372                       unsigned flags, uint64_t *res);
373
374template
375Fault
376TimingSimpleCPU::write(uint32_t data, Addr addr,
377                       unsigned flags, uint64_t *res);
378
379template
380Fault
381TimingSimpleCPU::write(uint16_t data, Addr addr,
382                       unsigned flags, uint64_t *res);
383
384template
385Fault
386TimingSimpleCPU::write(uint8_t data, Addr addr,
387                       unsigned flags, uint64_t *res);
388
389#endif //DOXYGEN_SHOULD_SKIP_THIS
390
391template<>
392Fault
393TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
394{
395    return write(*(uint64_t*)&data, addr, flags, res);
396}
397
398template<>
399Fault
400TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
401{
402    return write(*(uint32_t*)&data, addr, flags, res);
403}
404
405
406template<>
407Fault
408TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
409{
410    return write((uint32_t)data, addr, flags, res);
411}
412
413
414void
415TimingSimpleCPU::fetch()
416{
417    checkForInterrupts();
418
419    // need to fill in CPU & thread IDs here
420    Request *ifetch_req = new Request();
421    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
422    Fault fault = setupFetchRequest(ifetch_req);
423
424    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
425    ifetch_pkt->dataStatic(&inst);
426
427    if (fault == NoFault) {
428        if (!icachePort.sendTiming(ifetch_pkt)) {
429            // Need to wait for retry
430            _status = IcacheRetry;
431        } else {
432            // Need to wait for cache to respond
433            _status = IcacheWaitResponse;
434            // ownership of packet transferred to memory system
435            ifetch_pkt = NULL;
436        }
437    } else {
438        // fetch fault: advance directly to next instruction (fault handler)
439        advanceInst(fault);
440    }
441
442    numCycles += curTick - previousTick;
443    previousTick = curTick;
444}
445
446
447void
448TimingSimpleCPU::advanceInst(Fault fault)
449{
450    advancePC(fault);
451
452    if (_status == Running) {
453        // kick off fetch of next instruction... callback from icache
454        // response will cause that instruction to be executed,
455        // keeping the CPU running.
456        fetch();
457    }
458}
459
460
461void
462TimingSimpleCPU::completeIfetch(Packet *pkt)
463{
464    // received a response from the icache: execute the received
465    // instruction
466    assert(pkt->result == Packet::Success);
467    assert(_status == IcacheWaitResponse);
468
469    _status = Running;
470
471    delete pkt->req;
472    delete pkt;
473
474    numCycles += curTick - previousTick;
475    previousTick = curTick;
476
477    if (getState() == SimObject::Draining) {
478        completeDrain();
479        return;
480    }
481
482    preExecute();
483    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
484        // load or store: just send to dcache
485        Fault fault = curStaticInst->initiateAcc(this, traceData);
486        if (fault == NoFault) {
487            // successfully initiated access: instruction will
488            // complete in dcache response callback
489            assert(_status == DcacheWaitResponse);
490        } else {
491            // fault: complete now to invoke fault handler
492            postExecute();
493            advanceInst(fault);
494        }
495    } else {
496        // non-memory instruction: execute completely now
497        Fault fault = curStaticInst->execute(this, traceData);
498        postExecute();
499        advanceInst(fault);
500    }
501}
502
503void
504TimingSimpleCPU::IcachePort::ITickEvent::process()
505{
506    cpu->completeIfetch(pkt);
507}
508
509bool
510TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
511{
512    // These next few lines could be replaced with something faster
513    // who knows what though
514    Tick time = pkt->req->getTime();
515    while (time < curTick)
516        time += lat;
517
518    if (time == curTick)
519        cpu->completeIfetch(pkt);
520    else
521        tickEvent.schedule(pkt, time);
522
523    return true;
524}
525
526void
527TimingSimpleCPU::IcachePort::recvRetry()
528{
529    // we shouldn't get a retry unless we have a packet that we're
530    // waiting to transmit
531    assert(cpu->ifetch_pkt != NULL);
532    assert(cpu->_status == IcacheRetry);
533    Packet *tmp = cpu->ifetch_pkt;
534    if (sendTiming(tmp)) {
535        cpu->_status = IcacheWaitResponse;
536        cpu->ifetch_pkt = NULL;
537    }
538}
539
540void
541TimingSimpleCPU::completeDataAccess(Packet *pkt)
542{
543    // received a response from the dcache: complete the load or store
544    // instruction
545    assert(pkt->result == Packet::Success);
546    assert(_status == DcacheWaitResponse);
547    _status = Running;
548
549    numCycles += curTick - previousTick;
550    previousTick = curTick;
551
552    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
553
554    delete pkt->req;
555    delete pkt;
556
557    postExecute();
558
559    if (getState() == SimObject::Draining) {
560        advancePC(fault);
561        completeDrain();
562
563        return;
564    }
565
566    advanceInst(fault);
567}
568
569
570void
571TimingSimpleCPU::completeDrain()
572{
573    DPRINTF(Config, "Done draining\n");
574    changeState(SimObject::Drained);
575    drainEvent->process();
576}
577
578bool
579TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
580{
581    Tick time = pkt->req->getTime();
582    while (time < curTick)
583        time += lat;
584
585    if (time == curTick)
586        cpu->completeDataAccess(pkt);
587    else
588        tickEvent.schedule(pkt, time);
589
590    return true;
591}
592
593void
594TimingSimpleCPU::DcachePort::DTickEvent::process()
595{
596    cpu->completeDataAccess(pkt);
597}
598
599void
600TimingSimpleCPU::DcachePort::recvRetry()
601{
602    // we shouldn't get a retry unless we have a packet that we're
603    // waiting to transmit
604    assert(cpu->dcache_pkt != NULL);
605    assert(cpu->_status == DcacheRetry);
606    Packet *tmp = cpu->dcache_pkt;
607    if (sendTiming(tmp)) {
608        cpu->_status = DcacheWaitResponse;
609        cpu->dcache_pkt = NULL;
610    }
611}
612
613
614////////////////////////////////////////////////////////////////////////
615//
616//  TimingSimpleCPU Simulation Object
617//
618BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
619
620    Param<Counter> max_insts_any_thread;
621    Param<Counter> max_insts_all_threads;
622    Param<Counter> max_loads_any_thread;
623    Param<Counter> max_loads_all_threads;
624    Param<Tick> progress_interval;
625    SimObjectParam<MemObject *> mem;
626    SimObjectParam<System *> system;
627
628#if FULL_SYSTEM
629    SimObjectParam<AlphaITB *> itb;
630    SimObjectParam<AlphaDTB *> dtb;
631    Param<int> cpu_id;
632    Param<Tick> profile;
633#else
634    SimObjectParam<Process *> workload;
635#endif // FULL_SYSTEM
636
637    Param<int> clock;
638
639    Param<bool> defer_registration;
640    Param<int> width;
641    Param<bool> function_trace;
642    Param<Tick> function_trace_start;
643    Param<bool> simulate_stalls;
644
645END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
646
647BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
648
649    INIT_PARAM(max_insts_any_thread,
650               "terminate when any thread reaches this inst count"),
651    INIT_PARAM(max_insts_all_threads,
652               "terminate when all threads have reached this inst count"),
653    INIT_PARAM(max_loads_any_thread,
654               "terminate when any thread reaches this load count"),
655    INIT_PARAM(max_loads_all_threads,
656               "terminate when all threads have reached this load count"),
657    INIT_PARAM(progress_interval, "Progress interval"),
658    INIT_PARAM(mem, "memory"),
659    INIT_PARAM(system, "system object"),
660
661#if FULL_SYSTEM
662    INIT_PARAM(itb, "Instruction TLB"),
663    INIT_PARAM(dtb, "Data TLB"),
664    INIT_PARAM(cpu_id, "processor ID"),
665    INIT_PARAM(profile, ""),
666#else
667    INIT_PARAM(workload, "processes to run"),
668#endif // FULL_SYSTEM
669
670    INIT_PARAM(clock, "clock speed"),
671    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
672    INIT_PARAM(width, "cpu width"),
673    INIT_PARAM(function_trace, "Enable function trace"),
674    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
675    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
676
677END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
678
679
680CREATE_SIM_OBJECT(TimingSimpleCPU)
681{
682    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
683    params->name = getInstanceName();
684    params->numberOfThreads = 1;
685    params->max_insts_any_thread = max_insts_any_thread;
686    params->max_insts_all_threads = max_insts_all_threads;
687    params->max_loads_any_thread = max_loads_any_thread;
688    params->max_loads_all_threads = max_loads_all_threads;
689    params->progress_interval = progress_interval;
690    params->deferRegistration = defer_registration;
691    params->clock = clock;
692    params->functionTrace = function_trace;
693    params->functionTraceStart = function_trace_start;
694    params->mem = mem;
695    params->system = system;
696
697#if FULL_SYSTEM
698    params->itb = itb;
699    params->dtb = dtb;
700    params->cpu_id = cpu_id;
701    params->profile = profile;
702#else
703    params->process = workload;
704#endif
705
706    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
707    return cpu;
708}
709
710REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
711
712