timing.cc revision 3184:8edaf4539e05
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/utility.hh"
33#include "cpu/exetrace.hh"
34#include "cpu/simple/timing.hh"
35#include "mem/packet_impl.hh"
36#include "sim/builder.hh"
37#include "sim/system.hh"
38
39using namespace std;
40using namespace TheISA;
41
42Port *
43TimingSimpleCPU::getPort(const std::string &if_name, int idx)
44{
45    if (if_name == "dcache_port")
46        return &dcachePort;
47    else if (if_name == "icache_port")
48        return &icachePort;
49    else
50        panic("No Such Port\n");
51}
52
53void
54TimingSimpleCPU::init()
55{
56    BaseCPU::init();
57#if FULL_SYSTEM
58    for (int i = 0; i < threadContexts.size(); ++i) {
59        ThreadContext *tc = threadContexts[i];
60
61        // initialize CPU, including PC
62        TheISA::initCPU(tc, tc->readCpuId());
63    }
64#endif
65}
66
67Tick
68TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
69{
70    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
71    return curTick;
72}
73
74void
75TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
76{
77    //No internal storage to update, jusst return
78    return;
79}
80
81void
82TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
83{
84    if (status == RangeChange)
85        return;
86
87    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
88}
89
90
91void
92TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
93{
94    pkt = _pkt;
95    Event::schedule(t);
96}
97
98TimingSimpleCPU::TimingSimpleCPU(Params *p)
99    : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
100      cpu_id(p->cpu_id)
101{
102    _status = Idle;
103    ifetch_pkt = dcache_pkt = NULL;
104    drainEvent = NULL;
105    fetchEvent = NULL;
106    changeState(SimObject::Running);
107}
108
109
110TimingSimpleCPU::~TimingSimpleCPU()
111{
112}
113
114void
115TimingSimpleCPU::serialize(ostream &os)
116{
117    SimObject::State so_state = SimObject::getState();
118    SERIALIZE_ENUM(so_state);
119    BaseSimpleCPU::serialize(os);
120}
121
122void
123TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
124{
125    SimObject::State so_state;
126    UNSERIALIZE_ENUM(so_state);
127    BaseSimpleCPU::unserialize(cp, section);
128}
129
130unsigned int
131TimingSimpleCPU::drain(Event *drain_event)
132{
133    // TimingSimpleCPU is ready to drain if it's not waiting for
134    // an access to complete.
135    if (status() == Idle || status() == Running || status() == SwitchedOut) {
136        changeState(SimObject::Drained);
137        return 0;
138    } else {
139        changeState(SimObject::Draining);
140        drainEvent = drain_event;
141        return 1;
142    }
143}
144
145void
146TimingSimpleCPU::resume()
147{
148    if (_status != SwitchedOut && _status != Idle) {
149        // Delete the old event if it existed.
150        if (fetchEvent) {
151            if (fetchEvent->scheduled())
152                fetchEvent->deschedule();
153
154            delete fetchEvent;
155        }
156
157        fetchEvent =
158            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
159        fetchEvent->schedule(curTick);
160    }
161
162    assert(system->getMemoryMode() == System::Timing);
163    changeState(SimObject::Running);
164}
165
166void
167TimingSimpleCPU::switchOut()
168{
169    assert(status() == Running || status() == Idle);
170    _status = SwitchedOut;
171
172    // If we've been scheduled to resume but are then told to switch out,
173    // we'll need to cancel it.
174    if (fetchEvent && fetchEvent->scheduled())
175        fetchEvent->deschedule();
176}
177
178
179void
180TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
181{
182    BaseCPU::takeOverFrom(oldCPU);
183
184    // if any of this CPU's ThreadContexts are active, mark the CPU as
185    // running and schedule its tick event.
186    for (int i = 0; i < threadContexts.size(); ++i) {
187        ThreadContext *tc = threadContexts[i];
188        if (tc->status() == ThreadContext::Active && _status != Running) {
189            _status = Running;
190            break;
191        }
192    }
193}
194
195
196void
197TimingSimpleCPU::activateContext(int thread_num, int delay)
198{
199    assert(thread_num == 0);
200    assert(thread);
201
202    assert(_status == Idle);
203
204    notIdleFraction++;
205    _status = Running;
206    // kick things off by initiating the fetch of the next instruction
207    fetchEvent =
208        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
209    fetchEvent->schedule(curTick + cycles(delay));
210}
211
212
213void
214TimingSimpleCPU::suspendContext(int thread_num)
215{
216    assert(thread_num == 0);
217    assert(thread);
218
219    assert(_status == Running);
220
221    // just change status to Idle... if status != Running,
222    // completeInst() will not initiate fetch of next instruction.
223
224    notIdleFraction--;
225    _status = Idle;
226}
227
228
229template <class T>
230Fault
231TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
232{
233    Request *req =
234        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
235                    cpu_id, /* thread ID */ 0);
236
237    if (traceData) {
238        traceData->setAddr(req->getVaddr());
239    }
240
241   // translate to physical address
242    Fault fault = thread->translateDataReadReq(req);
243
244    // Now do the access.
245    if (fault == NoFault) {
246        Packet *pkt =
247            new Packet(req, Packet::ReadReq, Packet::Broadcast);
248        pkt->dataDynamic<T>(new T);
249
250        if (!dcachePort.sendTiming(pkt)) {
251            _status = DcacheRetry;
252            dcache_pkt = pkt;
253        } else {
254            _status = DcacheWaitResponse;
255            // memory system takes ownership of packet
256            dcache_pkt = NULL;
257        }
258    }
259
260    // This will need a new way to tell if it has a dcache attached.
261    if (req->isUncacheable())
262        recordEvent("Uncached Read");
263
264    return fault;
265}
266
267#ifndef DOXYGEN_SHOULD_SKIP_THIS
268
269template
270Fault
271TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
272
273template
274Fault
275TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
276
277template
278Fault
279TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
280
281template
282Fault
283TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
284
285#endif //DOXYGEN_SHOULD_SKIP_THIS
286
287template<>
288Fault
289TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
290{
291    return read(addr, *(uint64_t*)&data, flags);
292}
293
294template<>
295Fault
296TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
297{
298    return read(addr, *(uint32_t*)&data, flags);
299}
300
301
302template<>
303Fault
304TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
305{
306    return read(addr, (uint32_t&)data, flags);
307}
308
309
310template <class T>
311Fault
312TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
313{
314    Request *req =
315        new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
316                    cpu_id, /* thread ID */ 0);
317
318    // translate to physical address
319    Fault fault = thread->translateDataWriteReq(req);
320
321    // Now do the access.
322    if (fault == NoFault) {
323        assert(dcache_pkt == NULL);
324        dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
325        dcache_pkt->allocate();
326        dcache_pkt->set(data);
327
328        bool do_access = true;  // flag to suppress cache access
329
330        if (req->isLocked()) {
331            do_access = TheISA::handleLockedWrite(thread, req);
332        }
333
334        if (do_access) {
335            if (!dcachePort.sendTiming(dcache_pkt)) {
336                _status = DcacheRetry;
337            } else {
338                _status = DcacheWaitResponse;
339                // memory system takes ownership of packet
340                dcache_pkt = NULL;
341            }
342        }
343    }
344
345    // This will need a new way to tell if it's hooked up to a cache or not.
346    if (req->isUncacheable())
347        recordEvent("Uncached Write");
348
349    // If the write needs to have a fault on the access, consider calling
350    // changeStatus() and changing it to "bad addr write" or something.
351    return fault;
352}
353
354
355#ifndef DOXYGEN_SHOULD_SKIP_THIS
356template
357Fault
358TimingSimpleCPU::write(uint64_t data, Addr addr,
359                       unsigned flags, uint64_t *res);
360
361template
362Fault
363TimingSimpleCPU::write(uint32_t data, Addr addr,
364                       unsigned flags, uint64_t *res);
365
366template
367Fault
368TimingSimpleCPU::write(uint16_t data, Addr addr,
369                       unsigned flags, uint64_t *res);
370
371template
372Fault
373TimingSimpleCPU::write(uint8_t data, Addr addr,
374                       unsigned flags, uint64_t *res);
375
376#endif //DOXYGEN_SHOULD_SKIP_THIS
377
378template<>
379Fault
380TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
381{
382    return write(*(uint64_t*)&data, addr, flags, res);
383}
384
385template<>
386Fault
387TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
388{
389    return write(*(uint32_t*)&data, addr, flags, res);
390}
391
392
393template<>
394Fault
395TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
396{
397    return write((uint32_t)data, addr, flags, res);
398}
399
400
401void
402TimingSimpleCPU::fetch()
403{
404    checkForInterrupts();
405
406    Request *ifetch_req = new Request();
407    ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
408    Fault fault = setupFetchRequest(ifetch_req);
409
410    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
411    ifetch_pkt->dataStatic(&inst);
412
413    if (fault == NoFault) {
414        if (!icachePort.sendTiming(ifetch_pkt)) {
415            // Need to wait for retry
416            _status = IcacheRetry;
417        } else {
418            // Need to wait for cache to respond
419            _status = IcacheWaitResponse;
420            // ownership of packet transferred to memory system
421            ifetch_pkt = NULL;
422        }
423    } else {
424        // fetch fault: advance directly to next instruction (fault handler)
425        advanceInst(fault);
426    }
427}
428
429
430void
431TimingSimpleCPU::advanceInst(Fault fault)
432{
433    advancePC(fault);
434
435    if (_status == Running) {
436        // kick off fetch of next instruction... callback from icache
437        // response will cause that instruction to be executed,
438        // keeping the CPU running.
439        fetch();
440    }
441}
442
443
444void
445TimingSimpleCPU::completeIfetch(Packet *pkt)
446{
447    // received a response from the icache: execute the received
448    // instruction
449    assert(pkt->result == Packet::Success);
450    assert(_status == IcacheWaitResponse);
451
452    _status = Running;
453
454    delete pkt->req;
455    delete pkt;
456
457    if (getState() == SimObject::Draining) {
458        completeDrain();
459        return;
460    }
461
462    preExecute();
463    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
464        // load or store: just send to dcache
465        Fault fault = curStaticInst->initiateAcc(this, traceData);
466        if (_status != Running) {
467            // instruction will complete in dcache response callback
468            assert(_status == DcacheWaitResponse || _status == DcacheRetry);
469            assert(fault == NoFault);
470        } else {
471            if (fault == NoFault) {
472                // early fail on store conditional: complete now
473                assert(dcache_pkt != NULL);
474                fault = curStaticInst->completeAcc(dcache_pkt, this,
475                                                   traceData);
476                delete dcache_pkt->req;
477                delete dcache_pkt;
478                dcache_pkt = NULL;
479            }
480            postExecute();
481            advanceInst(fault);
482        }
483    } else {
484        // non-memory instruction: execute completely now
485        Fault fault = curStaticInst->execute(this, traceData);
486        postExecute();
487        advanceInst(fault);
488    }
489}
490
491void
492TimingSimpleCPU::IcachePort::ITickEvent::process()
493{
494    cpu->completeIfetch(pkt);
495}
496
497bool
498TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
499{
500    // delay processing of returned data until next CPU clock edge
501    Tick time = pkt->req->getTime();
502    while (time < curTick)
503        time += lat;
504
505    if (time == curTick)
506        cpu->completeIfetch(pkt);
507    else
508        tickEvent.schedule(pkt, time);
509
510    return true;
511}
512
513void
514TimingSimpleCPU::IcachePort::recvRetry()
515{
516    // we shouldn't get a retry unless we have a packet that we're
517    // waiting to transmit
518    assert(cpu->ifetch_pkt != NULL);
519    assert(cpu->_status == IcacheRetry);
520    Packet *tmp = cpu->ifetch_pkt;
521    if (sendTiming(tmp)) {
522        cpu->_status = IcacheWaitResponse;
523        cpu->ifetch_pkt = NULL;
524    }
525}
526
527void
528TimingSimpleCPU::completeDataAccess(Packet *pkt)
529{
530    // received a response from the dcache: complete the load or store
531    // instruction
532    assert(pkt->result == Packet::Success);
533    assert(_status == DcacheWaitResponse);
534    _status = Running;
535
536    if (getState() == SimObject::Draining) {
537        completeDrain();
538
539        delete pkt->req;
540        delete pkt;
541
542        return;
543    }
544
545    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
546
547    if (pkt->isRead() && pkt->req->isLocked()) {
548        TheISA::handleLockedRead(thread, pkt->req);
549    }
550
551    delete pkt->req;
552    delete pkt;
553
554    postExecute();
555    advanceInst(fault);
556}
557
558
559void
560TimingSimpleCPU::completeDrain()
561{
562    DPRINTF(Config, "Done draining\n");
563    changeState(SimObject::Drained);
564    drainEvent->process();
565}
566
567bool
568TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
569{
570    // delay processing of returned data until next CPU clock edge
571    Tick time = pkt->req->getTime();
572    while (time < curTick)
573        time += lat;
574
575    if (time == curTick)
576        cpu->completeDataAccess(pkt);
577    else
578        tickEvent.schedule(pkt, time);
579
580    return true;
581}
582
583void
584TimingSimpleCPU::DcachePort::DTickEvent::process()
585{
586    cpu->completeDataAccess(pkt);
587}
588
589void
590TimingSimpleCPU::DcachePort::recvRetry()
591{
592    // we shouldn't get a retry unless we have a packet that we're
593    // waiting to transmit
594    assert(cpu->dcache_pkt != NULL);
595    assert(cpu->_status == DcacheRetry);
596    Packet *tmp = cpu->dcache_pkt;
597    if (sendTiming(tmp)) {
598        cpu->_status = DcacheWaitResponse;
599        // memory system takes ownership of packet
600        cpu->dcache_pkt = NULL;
601    }
602}
603
604
605////////////////////////////////////////////////////////////////////////
606//
607//  TimingSimpleCPU Simulation Object
608//
609BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
610
611    Param<Counter> max_insts_any_thread;
612    Param<Counter> max_insts_all_threads;
613    Param<Counter> max_loads_any_thread;
614    Param<Counter> max_loads_all_threads;
615    Param<Tick> progress_interval;
616    SimObjectParam<MemObject *> mem;
617    SimObjectParam<System *> system;
618    Param<int> cpu_id;
619
620#if FULL_SYSTEM
621    SimObjectParam<AlphaITB *> itb;
622    SimObjectParam<AlphaDTB *> dtb;
623    Param<Tick> profile;
624#else
625    SimObjectParam<Process *> workload;
626#endif // FULL_SYSTEM
627
628    Param<int> clock;
629
630    Param<bool> defer_registration;
631    Param<int> width;
632    Param<bool> function_trace;
633    Param<Tick> function_trace_start;
634    Param<bool> simulate_stalls;
635
636END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
637
638BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
639
640    INIT_PARAM(max_insts_any_thread,
641               "terminate when any thread reaches this inst count"),
642    INIT_PARAM(max_insts_all_threads,
643               "terminate when all threads have reached this inst count"),
644    INIT_PARAM(max_loads_any_thread,
645               "terminate when any thread reaches this load count"),
646    INIT_PARAM(max_loads_all_threads,
647               "terminate when all threads have reached this load count"),
648    INIT_PARAM(progress_interval, "Progress interval"),
649    INIT_PARAM(mem, "memory"),
650    INIT_PARAM(system, "system object"),
651    INIT_PARAM(cpu_id, "processor ID"),
652
653#if FULL_SYSTEM
654    INIT_PARAM(itb, "Instruction TLB"),
655    INIT_PARAM(dtb, "Data TLB"),
656    INIT_PARAM(profile, ""),
657#else
658    INIT_PARAM(workload, "processes to run"),
659#endif // FULL_SYSTEM
660
661    INIT_PARAM(clock, "clock speed"),
662    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
663    INIT_PARAM(width, "cpu width"),
664    INIT_PARAM(function_trace, "Enable function trace"),
665    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
666    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
667
668END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
669
670
671CREATE_SIM_OBJECT(TimingSimpleCPU)
672{
673    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
674    params->name = getInstanceName();
675    params->numberOfThreads = 1;
676    params->max_insts_any_thread = max_insts_any_thread;
677    params->max_insts_all_threads = max_insts_all_threads;
678    params->max_loads_any_thread = max_loads_any_thread;
679    params->max_loads_all_threads = max_loads_all_threads;
680    params->progress_interval = progress_interval;
681    params->deferRegistration = defer_registration;
682    params->clock = clock;
683    params->functionTrace = function_trace;
684    params->functionTraceStart = function_trace_start;
685    params->mem = mem;
686    params->system = system;
687    params->cpu_id = cpu_id;
688
689#if FULL_SYSTEM
690    params->itb = itb;
691    params->dtb = dtb;
692    params->profile = profile;
693#else
694    params->process = workload;
695#endif
696
697    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
698    return cpu;
699}
700
701REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
702
703