timing.cc revision 2915:1f4d02556ac1
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40Port *
41TimingSimpleCPU::getPort(const std::string &if_name, int idx)
42{
43    if (if_name == "dcache_port")
44        return &dcachePort;
45    else if (if_name == "icache_port")
46        return &icachePort;
47    else
48        panic("No Such Port\n");
49}
50
51void
52TimingSimpleCPU::init()
53{
54    BaseCPU::init();
55#if FULL_SYSTEM
56    for (int i = 0; i < threadContexts.size(); ++i) {
57        ThreadContext *tc = threadContexts[i];
58
59        // initialize CPU, including PC
60        TheISA::initCPU(tc, tc->readCpuId());
61    }
62#endif
63}
64
65Tick
66TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
67{
68    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
69    return curTick;
70}
71
72void
73TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
74{
75    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
76}
77
78void
79TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
80{
81    if (status == RangeChange)
82        return;
83
84    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
85}
86
87TimingSimpleCPU::TimingSimpleCPU(Params *p)
88    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
89{
90    _status = Idle;
91    ifetch_pkt = dcache_pkt = NULL;
92    drainEvent = NULL;
93    fetchEvent = NULL;
94    state = SimObject::Timing;
95}
96
97
98TimingSimpleCPU::~TimingSimpleCPU()
99{
100}
101
102void
103TimingSimpleCPU::serialize(ostream &os)
104{
105    SimObject::State so_state = SimObject::getState();
106    SERIALIZE_ENUM(so_state);
107    BaseSimpleCPU::serialize(os);
108}
109
110void
111TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
112{
113    SimObject::State so_state;
114    UNSERIALIZE_ENUM(so_state);
115    BaseSimpleCPU::unserialize(cp, section);
116}
117
118bool
119TimingSimpleCPU::drain(Event *drain_event)
120{
121    // TimingSimpleCPU is ready to drain if it's not waiting for
122    // an access to complete.
123    if (status() == Idle || status() == Running || status() == SwitchedOut) {
124        changeState(SimObject::DrainedTiming);
125        return true;
126    } else {
127        changeState(SimObject::Draining);
128        drainEvent = drain_event;
129        return false;
130    }
131}
132
133void
134TimingSimpleCPU::resume()
135{
136    if (_status != SwitchedOut && _status != Idle) {
137        // Delete the old event if it existed.
138        if (fetchEvent) {
139            if (fetchEvent->scheduled())
140                fetchEvent->deschedule();
141
142            delete fetchEvent;
143        }
144
145        fetchEvent =
146            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
147        fetchEvent->schedule(curTick);
148    }
149}
150
151void
152TimingSimpleCPU::setMemoryMode(State new_mode)
153{
154    assert(new_mode == SimObject::Timing);
155}
156
157void
158TimingSimpleCPU::switchOut()
159{
160    assert(status() == Running || status() == Idle);
161    _status = SwitchedOut;
162
163    // If we've been scheduled to resume but are then told to switch out,
164    // we'll need to cancel it.
165    if (fetchEvent && fetchEvent->scheduled())
166        fetchEvent->deschedule();
167}
168
169
170void
171TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
172{
173    BaseCPU::takeOverFrom(oldCPU);
174
175    // if any of this CPU's ThreadContexts are active, mark the CPU as
176    // running and schedule its tick event.
177    for (int i = 0; i < threadContexts.size(); ++i) {
178        ThreadContext *tc = threadContexts[i];
179        if (tc->status() == ThreadContext::Active && _status != Running) {
180            _status = Running;
181            break;
182        }
183    }
184}
185
186
187void
188TimingSimpleCPU::activateContext(int thread_num, int delay)
189{
190    assert(thread_num == 0);
191    assert(thread);
192
193    assert(_status == Idle);
194
195    notIdleFraction++;
196    _status = Running;
197    // kick things off by initiating the fetch of the next instruction
198    fetchEvent =
199        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
200    fetchEvent->schedule(curTick + cycles(delay));
201}
202
203
204void
205TimingSimpleCPU::suspendContext(int thread_num)
206{
207    assert(thread_num == 0);
208    assert(thread);
209
210    assert(_status == Running);
211
212    // just change status to Idle... if status != Running,
213    // completeInst() will not initiate fetch of next instruction.
214
215    notIdleFraction--;
216    _status = Idle;
217}
218
219
220template <class T>
221Fault
222TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
223{
224    // need to fill in CPU & thread IDs here
225    Request *data_read_req = new Request();
226    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
227    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
228
229    if (traceData) {
230        traceData->setAddr(data_read_req->getVaddr());
231    }
232
233   // translate to physical address
234    Fault fault = thread->translateDataReadReq(data_read_req);
235
236    // Now do the access.
237    if (fault == NoFault) {
238        Packet *data_read_pkt =
239            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
240        data_read_pkt->dataDynamic<T>(new T);
241
242        if (!dcachePort.sendTiming(data_read_pkt)) {
243            _status = DcacheRetry;
244            dcache_pkt = data_read_pkt;
245        } else {
246            _status = DcacheWaitResponse;
247            dcache_pkt = NULL;
248        }
249    }
250
251    // This will need a new way to tell if it has a dcache attached.
252    if (data_read_req->getFlags() & UNCACHEABLE)
253        recordEvent("Uncached Read");
254
255    return fault;
256}
257
258#ifndef DOXYGEN_SHOULD_SKIP_THIS
259
260template
261Fault
262TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
263
264template
265Fault
266TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
267
268template
269Fault
270TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
271
272template
273Fault
274TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
275
276#endif //DOXYGEN_SHOULD_SKIP_THIS
277
278template<>
279Fault
280TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
281{
282    return read(addr, *(uint64_t*)&data, flags);
283}
284
285template<>
286Fault
287TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
288{
289    return read(addr, *(uint32_t*)&data, flags);
290}
291
292
293template<>
294Fault
295TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
296{
297    return read(addr, (uint32_t&)data, flags);
298}
299
300
301template <class T>
302Fault
303TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
304{
305    // need to fill in CPU & thread IDs here
306    Request *data_write_req = new Request();
307    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
308    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
309
310    // translate to physical address
311    Fault fault = thread->translateDataWriteReq(data_write_req);
312    // Now do the access.
313    if (fault == NoFault) {
314        Packet *data_write_pkt =
315            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
316        data_write_pkt->allocate();
317        data_write_pkt->set(data);
318
319        if (!dcachePort.sendTiming(data_write_pkt)) {
320            _status = DcacheRetry;
321            dcache_pkt = data_write_pkt;
322        } else {
323            _status = DcacheWaitResponse;
324            dcache_pkt = NULL;
325        }
326    }
327
328    // This will need a new way to tell if it's hooked up to a cache or not.
329    if (data_write_req->getFlags() & UNCACHEABLE)
330        recordEvent("Uncached Write");
331
332    // If the write needs to have a fault on the access, consider calling
333    // changeStatus() and changing it to "bad addr write" or something.
334    return fault;
335}
336
337
338#ifndef DOXYGEN_SHOULD_SKIP_THIS
339template
340Fault
341TimingSimpleCPU::write(uint64_t data, Addr addr,
342                       unsigned flags, uint64_t *res);
343
344template
345Fault
346TimingSimpleCPU::write(uint32_t data, Addr addr,
347                       unsigned flags, uint64_t *res);
348
349template
350Fault
351TimingSimpleCPU::write(uint16_t data, Addr addr,
352                       unsigned flags, uint64_t *res);
353
354template
355Fault
356TimingSimpleCPU::write(uint8_t data, Addr addr,
357                       unsigned flags, uint64_t *res);
358
359#endif //DOXYGEN_SHOULD_SKIP_THIS
360
361template<>
362Fault
363TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
364{
365    return write(*(uint64_t*)&data, addr, flags, res);
366}
367
368template<>
369Fault
370TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
371{
372    return write(*(uint32_t*)&data, addr, flags, res);
373}
374
375
376template<>
377Fault
378TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
379{
380    return write((uint32_t)data, addr, flags, res);
381}
382
383
384void
385TimingSimpleCPU::fetch()
386{
387    checkForInterrupts();
388
389    // need to fill in CPU & thread IDs here
390    Request *ifetch_req = new Request();
391    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
392    Fault fault = setupFetchRequest(ifetch_req);
393
394    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
395    ifetch_pkt->dataStatic(&inst);
396
397    if (fault == NoFault) {
398        if (!icachePort.sendTiming(ifetch_pkt)) {
399            // Need to wait for retry
400            _status = IcacheRetry;
401        } else {
402            // Need to wait for cache to respond
403            _status = IcacheWaitResponse;
404            // ownership of packet transferred to memory system
405            ifetch_pkt = NULL;
406        }
407    } else {
408        // fetch fault: advance directly to next instruction (fault handler)
409        advanceInst(fault);
410    }
411}
412
413
414void
415TimingSimpleCPU::advanceInst(Fault fault)
416{
417    advancePC(fault);
418
419    if (_status == Running) {
420        // kick off fetch of next instruction... callback from icache
421        // response will cause that instruction to be executed,
422        // keeping the CPU running.
423        fetch();
424    }
425}
426
427
428void
429TimingSimpleCPU::completeIfetch(Packet *pkt)
430{
431    // received a response from the icache: execute the received
432    // instruction
433    assert(pkt->result == Packet::Success);
434    assert(_status == IcacheWaitResponse);
435
436    _status = Running;
437
438    delete pkt->req;
439    delete pkt;
440
441    if (getState() == SimObject::Draining) {
442        completeDrain();
443        return;
444    }
445
446    preExecute();
447    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
448        // load or store: just send to dcache
449        Fault fault = curStaticInst->initiateAcc(this, traceData);
450        if (fault == NoFault) {
451            // successfully initiated access: instruction will
452            // complete in dcache response callback
453            assert(_status == DcacheWaitResponse);
454        } else {
455            // fault: complete now to invoke fault handler
456            postExecute();
457            advanceInst(fault);
458        }
459    } else {
460        // non-memory instruction: execute completely now
461        Fault fault = curStaticInst->execute(this, traceData);
462        postExecute();
463        advanceInst(fault);
464    }
465}
466
467
468bool
469TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
470{
471    cpu->completeIfetch(pkt);
472    return true;
473}
474
475void
476TimingSimpleCPU::IcachePort::recvRetry()
477{
478    // we shouldn't get a retry unless we have a packet that we're
479    // waiting to transmit
480    assert(cpu->ifetch_pkt != NULL);
481    assert(cpu->_status == IcacheRetry);
482    Packet *tmp = cpu->ifetch_pkt;
483    if (sendTiming(tmp)) {
484        cpu->_status = IcacheWaitResponse;
485        cpu->ifetch_pkt = NULL;
486    }
487}
488
489void
490TimingSimpleCPU::completeDataAccess(Packet *pkt)
491{
492    // received a response from the dcache: complete the load or store
493    // instruction
494    assert(pkt->result == Packet::Success);
495    assert(_status == DcacheWaitResponse);
496    _status = Running;
497
498    if (getState() == SimObject::Draining) {
499        completeDrain();
500
501        delete pkt->req;
502        delete pkt;
503
504        return;
505    }
506
507    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
508
509    delete pkt->req;
510    delete pkt;
511
512    postExecute();
513    advanceInst(fault);
514}
515
516
517void
518TimingSimpleCPU::completeDrain()
519{
520    DPRINTF(Config, "Done draining\n");
521    changeState(SimObject::DrainedTiming);
522    drainEvent->process();
523}
524
525bool
526TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
527{
528    cpu->completeDataAccess(pkt);
529    return true;
530}
531
532void
533TimingSimpleCPU::DcachePort::recvRetry()
534{
535    // we shouldn't get a retry unless we have a packet that we're
536    // waiting to transmit
537    assert(cpu->dcache_pkt != NULL);
538    assert(cpu->_status == DcacheRetry);
539    Packet *tmp = cpu->dcache_pkt;
540    if (sendTiming(tmp)) {
541        cpu->_status = DcacheWaitResponse;
542        cpu->dcache_pkt = NULL;
543    }
544}
545
546
547////////////////////////////////////////////////////////////////////////
548//
549//  TimingSimpleCPU Simulation Object
550//
551BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
552
553    Param<Counter> max_insts_any_thread;
554    Param<Counter> max_insts_all_threads;
555    Param<Counter> max_loads_any_thread;
556    Param<Counter> max_loads_all_threads;
557    SimObjectParam<MemObject *> mem;
558
559#if FULL_SYSTEM
560    SimObjectParam<AlphaITB *> itb;
561    SimObjectParam<AlphaDTB *> dtb;
562    SimObjectParam<System *> system;
563    Param<int> cpu_id;
564    Param<Tick> profile;
565#else
566    SimObjectParam<Process *> workload;
567#endif // FULL_SYSTEM
568
569    Param<int> clock;
570
571    Param<bool> defer_registration;
572    Param<int> width;
573    Param<bool> function_trace;
574    Param<Tick> function_trace_start;
575    Param<bool> simulate_stalls;
576
577END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
578
579BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
580
581    INIT_PARAM(max_insts_any_thread,
582               "terminate when any thread reaches this inst count"),
583    INIT_PARAM(max_insts_all_threads,
584               "terminate when all threads have reached this inst count"),
585    INIT_PARAM(max_loads_any_thread,
586               "terminate when any thread reaches this load count"),
587    INIT_PARAM(max_loads_all_threads,
588               "terminate when all threads have reached this load count"),
589    INIT_PARAM(mem, "memory"),
590
591#if FULL_SYSTEM
592    INIT_PARAM(itb, "Instruction TLB"),
593    INIT_PARAM(dtb, "Data TLB"),
594    INIT_PARAM(system, "system object"),
595    INIT_PARAM(cpu_id, "processor ID"),
596    INIT_PARAM(profile, ""),
597#else
598    INIT_PARAM(workload, "processes to run"),
599#endif // FULL_SYSTEM
600
601    INIT_PARAM(clock, "clock speed"),
602    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
603    INIT_PARAM(width, "cpu width"),
604    INIT_PARAM(function_trace, "Enable function trace"),
605    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
606    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
607
608END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
609
610
611CREATE_SIM_OBJECT(TimingSimpleCPU)
612{
613    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
614    params->name = getInstanceName();
615    params->numberOfThreads = 1;
616    params->max_insts_any_thread = max_insts_any_thread;
617    params->max_insts_all_threads = max_insts_all_threads;
618    params->max_loads_any_thread = max_loads_any_thread;
619    params->max_loads_all_threads = max_loads_all_threads;
620    params->deferRegistration = defer_registration;
621    params->clock = clock;
622    params->functionTrace = function_trace;
623    params->functionTraceStart = function_trace_start;
624    params->mem = mem;
625
626#if FULL_SYSTEM
627    params->itb = itb;
628    params->dtb = dtb;
629    params->system = system;
630    params->cpu_id = cpu_id;
631    params->profile = profile;
632#else
633    params->process = workload;
634#endif
635
636    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
637    return cpu;
638}
639
640REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
641
642