timing.cc revision 2856:89691405ec9c
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40Port *
41TimingSimpleCPU::getPort(const std::string &if_name, int idx)
42{
43    if (if_name == "dcache_port")
44        return &dcachePort;
45    else if (if_name == "icache_port")
46        return &icachePort;
47    else
48        panic("No Such Port\n");
49}
50
51void
52TimingSimpleCPU::init()
53{
54    BaseCPU::init();
55#if FULL_SYSTEM
56    for (int i = 0; i < threadContexts.size(); ++i) {
57        ThreadContext *tc = threadContexts[i];
58
59        // initialize CPU, including PC
60        TheISA::initCPU(tc, tc->readCpuId());
61    }
62#endif
63}
64
65Tick
66TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
67{
68    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
69    return curTick;
70}
71
72void
73TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
74{
75    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
76}
77
78void
79TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
80{
81    if (status == RangeChange)
82        return;
83
84    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
85}
86
87TimingSimpleCPU::TimingSimpleCPU(Params *p)
88    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
89{
90    _status = Idle;
91    ifetch_pkt = dcache_pkt = NULL;
92    drainEvent = NULL;
93    state = SimObject::Timing;
94}
95
96
97TimingSimpleCPU::~TimingSimpleCPU()
98{
99}
100
101void
102TimingSimpleCPU::serialize(ostream &os)
103{
104    SERIALIZE_ENUM(_status);
105    BaseSimpleCPU::serialize(os);
106}
107
108void
109TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
110{
111    UNSERIALIZE_ENUM(_status);
112    BaseSimpleCPU::unserialize(cp, section);
113}
114
115bool
116TimingSimpleCPU::drain(Event *drain_event)
117{
118    // TimingSimpleCPU is ready to drain if it's not waiting for
119    // an access to complete.
120    if (status() == Idle || status() == Running || status() == SwitchedOut) {
121        changeState(SimObject::DrainedTiming);
122        return false;
123    } else {
124        changeState(SimObject::Draining);
125        drainEvent = drain_event;
126        return true;
127    }
128}
129
130void
131TimingSimpleCPU::resume()
132{
133    if (_status != SwitchedOut && _status != Idle) {
134        Event *e =
135            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136        e->schedule(curTick);
137    }
138}
139
140void
141TimingSimpleCPU::setMemoryMode(State new_mode)
142{
143    assert(new_mode == SimObject::Timing);
144}
145
146void
147TimingSimpleCPU::switchOut()
148{
149    assert(status() == Running || status() == Idle);
150    _status = SwitchedOut;
151}
152
153
154void
155TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156{
157    BaseCPU::takeOverFrom(oldCPU);
158
159    // if any of this CPU's ThreadContexts are active, mark the CPU as
160    // running and schedule its tick event.
161    for (int i = 0; i < threadContexts.size(); ++i) {
162        ThreadContext *tc = threadContexts[i];
163        if (tc->status() == ThreadContext::Active && _status != Running) {
164            _status = Running;
165            break;
166        }
167    }
168}
169
170
171void
172TimingSimpleCPU::activateContext(int thread_num, int delay)
173{
174    assert(thread_num == 0);
175    assert(thread);
176
177    assert(_status == Idle);
178
179    notIdleFraction++;
180    _status = Running;
181    // kick things off by initiating the fetch of the next instruction
182    Event *e =
183        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184    e->schedule(curTick + cycles(delay));
185}
186
187
188void
189TimingSimpleCPU::suspendContext(int thread_num)
190{
191    assert(thread_num == 0);
192    assert(thread);
193
194    assert(_status == Running);
195
196    // just change status to Idle... if status != Running,
197    // completeInst() will not initiate fetch of next instruction.
198
199    notIdleFraction--;
200    _status = Idle;
201}
202
203
204template <class T>
205Fault
206TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207{
208    // need to fill in CPU & thread IDs here
209    Request *data_read_req = new Request();
210    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
211    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213    if (traceData) {
214        traceData->setAddr(data_read_req->getVaddr());
215    }
216
217   // translate to physical address
218    Fault fault = thread->translateDataReadReq(data_read_req);
219
220    // Now do the access.
221    if (fault == NoFault) {
222        Packet *data_read_pkt =
223            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224        data_read_pkt->dataDynamic<T>(new T);
225
226        if (!dcachePort.sendTiming(data_read_pkt)) {
227            _status = DcacheRetry;
228            dcache_pkt = data_read_pkt;
229        } else {
230            _status = DcacheWaitResponse;
231            dcache_pkt = NULL;
232        }
233    }
234
235    // This will need a new way to tell if it has a dcache attached.
236    if (data_read_req->getFlags() & UNCACHEABLE)
237        recordEvent("Uncached Read");
238
239    return fault;
240}
241
242#ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244template
245Fault
246TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248template
249Fault
250TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252template
253Fault
254TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256template
257Fault
258TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260#endif //DOXYGEN_SHOULD_SKIP_THIS
261
262template<>
263Fault
264TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265{
266    return read(addr, *(uint64_t*)&data, flags);
267}
268
269template<>
270Fault
271TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272{
273    return read(addr, *(uint32_t*)&data, flags);
274}
275
276
277template<>
278Fault
279TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280{
281    return read(addr, (uint32_t&)data, flags);
282}
283
284
285template <class T>
286Fault
287TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288{
289    // need to fill in CPU & thread IDs here
290    Request *data_write_req = new Request();
291    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
292    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294    // translate to physical address
295    Fault fault = thread->translateDataWriteReq(data_write_req);
296    // Now do the access.
297    if (fault == NoFault) {
298        Packet *data_write_pkt =
299            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300        data_write_pkt->allocate();
301        data_write_pkt->set(data);
302
303        if (!dcachePort.sendTiming(data_write_pkt)) {
304            _status = DcacheRetry;
305            dcache_pkt = data_write_pkt;
306        } else {
307            _status = DcacheWaitResponse;
308            dcache_pkt = NULL;
309        }
310    }
311
312    // This will need a new way to tell if it's hooked up to a cache or not.
313    if (data_write_req->getFlags() & UNCACHEABLE)
314        recordEvent("Uncached Write");
315
316    // If the write needs to have a fault on the access, consider calling
317    // changeStatus() and changing it to "bad addr write" or something.
318    return fault;
319}
320
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323template
324Fault
325TimingSimpleCPU::write(uint64_t data, Addr addr,
326                       unsigned flags, uint64_t *res);
327
328template
329Fault
330TimingSimpleCPU::write(uint32_t data, Addr addr,
331                       unsigned flags, uint64_t *res);
332
333template
334Fault
335TimingSimpleCPU::write(uint16_t data, Addr addr,
336                       unsigned flags, uint64_t *res);
337
338template
339Fault
340TimingSimpleCPU::write(uint8_t data, Addr addr,
341                       unsigned flags, uint64_t *res);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348{
349    return write(*(uint64_t*)&data, addr, flags, res);
350}
351
352template<>
353Fault
354TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355{
356    return write(*(uint32_t*)&data, addr, flags, res);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363{
364    return write((uint32_t)data, addr, flags, res);
365}
366
367
368void
369TimingSimpleCPU::fetch()
370{
371    checkForInterrupts();
372
373    // need to fill in CPU & thread IDs here
374    Request *ifetch_req = new Request();
375    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
376    Fault fault = setupFetchRequest(ifetch_req);
377
378    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
379    ifetch_pkt->dataStatic(&inst);
380
381    if (fault == NoFault) {
382        if (!icachePort.sendTiming(ifetch_pkt)) {
383            // Need to wait for retry
384            _status = IcacheRetry;
385        } else {
386            // Need to wait for cache to respond
387            _status = IcacheWaitResponse;
388            // ownership of packet transferred to memory system
389            ifetch_pkt = NULL;
390        }
391    } else {
392        // fetch fault: advance directly to next instruction (fault handler)
393        advanceInst(fault);
394    }
395}
396
397
398void
399TimingSimpleCPU::advanceInst(Fault fault)
400{
401    advancePC(fault);
402
403    if (_status == Running) {
404        // kick off fetch of next instruction... callback from icache
405        // response will cause that instruction to be executed,
406        // keeping the CPU running.
407        fetch();
408    }
409}
410
411
412void
413TimingSimpleCPU::completeIfetch(Packet *pkt)
414{
415    // received a response from the icache: execute the received
416    // instruction
417    assert(pkt->result == Packet::Success);
418    assert(_status == IcacheWaitResponse);
419
420    _status = Running;
421
422    delete pkt->req;
423    delete pkt;
424
425    if (getState() == SimObject::Draining) {
426        completeDrain();
427        return;
428    }
429
430    preExecute();
431    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
432        // load or store: just send to dcache
433        Fault fault = curStaticInst->initiateAcc(this, traceData);
434        if (fault == NoFault) {
435            // successfully initiated access: instruction will
436            // complete in dcache response callback
437            assert(_status == DcacheWaitResponse);
438        } else {
439            // fault: complete now to invoke fault handler
440            postExecute();
441            advanceInst(fault);
442        }
443    } else {
444        // non-memory instruction: execute completely now
445        Fault fault = curStaticInst->execute(this, traceData);
446        postExecute();
447        advanceInst(fault);
448    }
449}
450
451
452bool
453TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
454{
455    if (cpu->_status == DcacheWaitResponse)
456        cpu->completeDataAccess(pkt);
457    else if (cpu->_status == IcacheWaitResponse)
458        cpu->completeIfetch(pkt);
459    else
460        assert("OOPS" && 0);
461    return true;
462}
463
464void
465TimingSimpleCPU::IcachePort::recvRetry()
466{
467    // we shouldn't get a retry unless we have a packet that we're
468    // waiting to transmit
469    assert(cpu->ifetch_pkt != NULL);
470    assert(cpu->_status == IcacheRetry);
471    Packet *tmp = cpu->ifetch_pkt;
472    if (sendTiming(tmp)) {
473        cpu->_status = IcacheWaitResponse;
474        cpu->ifetch_pkt = NULL;
475    }
476}
477
478void
479TimingSimpleCPU::completeDataAccess(Packet *pkt)
480{
481    // received a response from the dcache: complete the load or store
482    // instruction
483    assert(pkt->result == Packet::Success);
484    assert(_status == DcacheWaitResponse);
485    _status = Running;
486
487    if (getState() == SimObject::Draining) {
488        completeDrain();
489
490        delete pkt->req;
491        delete pkt;
492
493        return;
494    }
495
496    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
497
498    delete pkt->req;
499    delete pkt;
500
501    postExecute();
502    advanceInst(fault);
503}
504
505
506void
507TimingSimpleCPU::completeDrain()
508{
509    DPRINTF(Config, "Done draining\n");
510    changeState(SimObject::DrainedTiming);
511    drainEvent->process();
512}
513
514bool
515TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
516{
517    cpu->completeDataAccess(pkt);
518    return true;
519}
520
521void
522TimingSimpleCPU::DcachePort::recvRetry()
523{
524    // we shouldn't get a retry unless we have a packet that we're
525    // waiting to transmit
526    assert(cpu->dcache_pkt != NULL);
527    assert(cpu->_status == DcacheRetry);
528    Packet *tmp = cpu->dcache_pkt;
529    if (sendTiming(tmp)) {
530        cpu->_status = DcacheWaitResponse;
531        cpu->dcache_pkt = NULL;
532    }
533}
534
535
536////////////////////////////////////////////////////////////////////////
537//
538//  TimingSimpleCPU Simulation Object
539//
540BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
541
542    Param<Counter> max_insts_any_thread;
543    Param<Counter> max_insts_all_threads;
544    Param<Counter> max_loads_any_thread;
545    Param<Counter> max_loads_all_threads;
546    SimObjectParam<MemObject *> mem;
547
548#if FULL_SYSTEM
549    SimObjectParam<AlphaITB *> itb;
550    SimObjectParam<AlphaDTB *> dtb;
551    SimObjectParam<System *> system;
552    Param<int> cpu_id;
553    Param<Tick> profile;
554#else
555    SimObjectParam<Process *> workload;
556#endif // FULL_SYSTEM
557
558    Param<int> clock;
559
560    Param<bool> defer_registration;
561    Param<int> width;
562    Param<bool> function_trace;
563    Param<Tick> function_trace_start;
564    Param<bool> simulate_stalls;
565
566END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
567
568BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
569
570    INIT_PARAM(max_insts_any_thread,
571               "terminate when any thread reaches this inst count"),
572    INIT_PARAM(max_insts_all_threads,
573               "terminate when all threads have reached this inst count"),
574    INIT_PARAM(max_loads_any_thread,
575               "terminate when any thread reaches this load count"),
576    INIT_PARAM(max_loads_all_threads,
577               "terminate when all threads have reached this load count"),
578    INIT_PARAM(mem, "memory"),
579
580#if FULL_SYSTEM
581    INIT_PARAM(itb, "Instruction TLB"),
582    INIT_PARAM(dtb, "Data TLB"),
583    INIT_PARAM(system, "system object"),
584    INIT_PARAM(cpu_id, "processor ID"),
585    INIT_PARAM(profile, ""),
586#else
587    INIT_PARAM(workload, "processes to run"),
588#endif // FULL_SYSTEM
589
590    INIT_PARAM(clock, "clock speed"),
591    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
592    INIT_PARAM(width, "cpu width"),
593    INIT_PARAM(function_trace, "Enable function trace"),
594    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
595    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
596
597END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
598
599
600CREATE_SIM_OBJECT(TimingSimpleCPU)
601{
602    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
603    params->name = getInstanceName();
604    params->numberOfThreads = 1;
605    params->max_insts_any_thread = max_insts_any_thread;
606    params->max_insts_all_threads = max_insts_all_threads;
607    params->max_loads_any_thread = max_loads_any_thread;
608    params->max_loads_all_threads = max_loads_all_threads;
609    params->deferRegistration = defer_registration;
610    params->clock = clock;
611    params->functionTrace = function_trace;
612    params->functionTraceStart = function_trace_start;
613    params->mem = mem;
614
615#if FULL_SYSTEM
616    params->itb = itb;
617    params->dtb = dtb;
618    params->system = system;
619    params->cpu_id = cpu_id;
620    params->profile = profile;
621#else
622    params->process = workload;
623#endif
624
625    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
626    return cpu;
627}
628
629REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
630
631