timing.cc revision 2835:d2a977df88de
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/utility.hh"
32#include "cpu/exetrace.hh"
33#include "cpu/simple/timing.hh"
34#include "mem/packet_impl.hh"
35#include "sim/builder.hh"
36
37using namespace std;
38using namespace TheISA;
39
40
41void
42TimingSimpleCPU::init()
43{
44    //Create Memory Ports (conect them up)
45    Port *mem_dport = mem->getPort("");
46    dcachePort.setPeer(mem_dport);
47    mem_dport->setPeer(&dcachePort);
48
49    Port *mem_iport = mem->getPort("");
50    icachePort.setPeer(mem_iport);
51    mem_iport->setPeer(&icachePort);
52
53    BaseCPU::init();
54#if FULL_SYSTEM
55    for (int i = 0; i < threadContexts.size(); ++i) {
56        ThreadContext *tc = threadContexts[i];
57
58        // initialize CPU, including PC
59        TheISA::initCPU(tc, tc->readCpuId());
60    }
61#endif
62}
63
64Tick
65TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
66{
67    panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
68    return curTick;
69}
70
71void
72TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
73{
74    panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
75}
76
77void
78TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
79{
80    if (status == RangeChange)
81        return;
82
83    panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
84}
85
86TimingSimpleCPU::TimingSimpleCPU(Params *p)
87    : BaseSimpleCPU(p), icachePort(this), dcachePort(this)
88{
89    _status = Idle;
90    ifetch_pkt = dcache_pkt = NULL;
91    quiesceEvent = NULL;
92    state = SimObject::Timing;
93}
94
95
96TimingSimpleCPU::~TimingSimpleCPU()
97{
98}
99
100void
101TimingSimpleCPU::serialize(ostream &os)
102{
103    SERIALIZE_ENUM(_status);
104    BaseSimpleCPU::serialize(os);
105}
106
107void
108TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
109{
110    UNSERIALIZE_ENUM(_status);
111    BaseSimpleCPU::unserialize(cp, section);
112}
113
114bool
115TimingSimpleCPU::quiesce(Event *quiesce_event)
116{
117    // TimingSimpleCPU is ready to quiesce if it's not waiting for
118    // an access to complete.
119    if (status() == Idle || status() == Running || status() == SwitchedOut) {
120        DPRINTF(Config, "Ready to quiesce\n");
121        return false;
122    } else {
123        DPRINTF(Config, "Waiting to quiesce\n");
124        changeState(SimObject::Quiescing);
125        quiesceEvent = quiesce_event;
126        return true;
127    }
128}
129
130void
131TimingSimpleCPU::resume()
132{
133    if (_status != SwitchedOut && _status != Idle) {
134        Event *e =
135            new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
136        e->schedule(curTick);
137    }
138}
139
140void
141TimingSimpleCPU::setMemoryMode(State new_mode)
142{
143    assert(new_mode == SimObject::Timing);
144}
145
146void
147TimingSimpleCPU::switchOut()
148{
149    assert(status() == Running || status() == Idle);
150    _status = SwitchedOut;
151}
152
153
154void
155TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
156{
157    BaseCPU::takeOverFrom(oldCPU);
158
159    // if any of this CPU's ThreadContexts are active, mark the CPU as
160    // running and schedule its tick event.
161    for (int i = 0; i < threadContexts.size(); ++i) {
162        ThreadContext *tc = threadContexts[i];
163        if (tc->status() == ThreadContext::Active && _status != Running) {
164            _status = Running;
165            break;
166        }
167    }
168}
169
170
171void
172TimingSimpleCPU::activateContext(int thread_num, int delay)
173{
174    assert(thread_num == 0);
175    assert(thread);
176
177    assert(_status == Idle);
178
179    notIdleFraction++;
180    _status = Running;
181    // kick things off by initiating the fetch of the next instruction
182    Event *e =
183        new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
184    e->schedule(curTick + cycles(delay));
185}
186
187
188void
189TimingSimpleCPU::suspendContext(int thread_num)
190{
191    assert(thread_num == 0);
192    assert(thread);
193
194    assert(_status == Running);
195
196    // just change status to Idle... if status != Running,
197    // completeInst() will not initiate fetch of next instruction.
198
199    notIdleFraction--;
200    _status = Idle;
201}
202
203
204template <class T>
205Fault
206TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
207{
208    // need to fill in CPU & thread IDs here
209    Request *data_read_req = new Request();
210    data_read_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
211    data_read_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
212
213    if (traceData) {
214        traceData->setAddr(data_read_req->getVaddr());
215    }
216
217   // translate to physical address
218    Fault fault = thread->translateDataReadReq(data_read_req);
219
220    // Now do the access.
221    if (fault == NoFault) {
222        Packet *data_read_pkt =
223            new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast);
224        data_read_pkt->dataDynamic<T>(new T);
225
226        if (!dcachePort.sendTiming(data_read_pkt)) {
227            _status = DcacheRetry;
228            dcache_pkt = data_read_pkt;
229        } else {
230            _status = DcacheWaitResponse;
231            dcache_pkt = NULL;
232        }
233    }
234
235    // This will need a new way to tell if it has a dcache attached.
236    if (data_read_req->getFlags() & UNCACHEABLE)
237        recordEvent("Uncached Read");
238
239    return fault;
240}
241
242#ifndef DOXYGEN_SHOULD_SKIP_THIS
243
244template
245Fault
246TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
247
248template
249Fault
250TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
251
252template
253Fault
254TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
255
256template
257Fault
258TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
259
260#endif //DOXYGEN_SHOULD_SKIP_THIS
261
262template<>
263Fault
264TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
265{
266    return read(addr, *(uint64_t*)&data, flags);
267}
268
269template<>
270Fault
271TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
272{
273    return read(addr, *(uint32_t*)&data, flags);
274}
275
276
277template<>
278Fault
279TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
280{
281    return read(addr, (uint32_t&)data, flags);
282}
283
284
285template <class T>
286Fault
287TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
288{
289    // need to fill in CPU & thread IDs here
290    Request *data_write_req = new Request();
291    data_write_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
292    data_write_req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
293
294    // translate to physical address
295    Fault fault = thread->translateDataWriteReq(data_write_req);
296    // Now do the access.
297    if (fault == NoFault) {
298        Packet *data_write_pkt =
299            new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast);
300        data_write_pkt->allocate();
301        data_write_pkt->set(data);
302
303        if (!dcachePort.sendTiming(data_write_pkt)) {
304            _status = DcacheRetry;
305            dcache_pkt = data_write_pkt;
306        } else {
307            _status = DcacheWaitResponse;
308            dcache_pkt = NULL;
309        }
310    }
311
312    // This will need a new way to tell if it's hooked up to a cache or not.
313    if (data_write_req->getFlags() & UNCACHEABLE)
314        recordEvent("Uncached Write");
315
316    // If the write needs to have a fault on the access, consider calling
317    // changeStatus() and changing it to "bad addr write" or something.
318    return fault;
319}
320
321
322#ifndef DOXYGEN_SHOULD_SKIP_THIS
323template
324Fault
325TimingSimpleCPU::write(uint64_t data, Addr addr,
326                       unsigned flags, uint64_t *res);
327
328template
329Fault
330TimingSimpleCPU::write(uint32_t data, Addr addr,
331                       unsigned flags, uint64_t *res);
332
333template
334Fault
335TimingSimpleCPU::write(uint16_t data, Addr addr,
336                       unsigned flags, uint64_t *res);
337
338template
339Fault
340TimingSimpleCPU::write(uint8_t data, Addr addr,
341                       unsigned flags, uint64_t *res);
342
343#endif //DOXYGEN_SHOULD_SKIP_THIS
344
345template<>
346Fault
347TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
348{
349    return write(*(uint64_t*)&data, addr, flags, res);
350}
351
352template<>
353Fault
354TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
355{
356    return write(*(uint32_t*)&data, addr, flags, res);
357}
358
359
360template<>
361Fault
362TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
363{
364    return write((uint32_t)data, addr, flags, res);
365}
366
367
368void
369TimingSimpleCPU::fetch()
370{
371    checkForInterrupts();
372
373    // need to fill in CPU & thread IDs here
374    Request *ifetch_req = new Request();
375    ifetch_req->setThreadContext(0,0); //Need CPU/Thread IDS HERE
376    Fault fault = setupFetchRequest(ifetch_req);
377
378    ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
379    ifetch_pkt->dataStatic(&inst);
380
381    if (fault == NoFault) {
382        if (!icachePort.sendTiming(ifetch_pkt)) {
383            // Need to wait for retry
384            _status = IcacheRetry;
385        } else {
386            // Need to wait for cache to respond
387            _status = IcacheWaitResponse;
388            // ownership of packet transferred to memory system
389            ifetch_pkt = NULL;
390        }
391    } else {
392        // fetch fault: advance directly to next instruction (fault handler)
393        advanceInst(fault);
394    }
395}
396
397
398void
399TimingSimpleCPU::advanceInst(Fault fault)
400{
401    advancePC(fault);
402
403    if (_status == Running) {
404        // kick off fetch of next instruction... callback from icache
405        // response will cause that instruction to be executed,
406        // keeping the CPU running.
407        fetch();
408    }
409}
410
411
412void
413TimingSimpleCPU::completeIfetch(Packet *pkt)
414{
415    // received a response from the icache: execute the received
416    // instruction
417    assert(pkt->result == Packet::Success);
418    assert(_status == IcacheWaitResponse);
419
420    _status = Running;
421
422    delete pkt->req;
423    delete pkt;
424
425    if (getState() == SimObject::Quiescing) {
426        completeQuiesce();
427        return;
428    }
429
430    preExecute();
431    if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
432        // load or store: just send to dcache
433        Fault fault = curStaticInst->initiateAcc(this, traceData);
434        if (fault == NoFault) {
435            // successfully initiated access: instruction will
436            // complete in dcache response callback
437            assert(_status == DcacheWaitResponse);
438        } else {
439            // fault: complete now to invoke fault handler
440            postExecute();
441            advanceInst(fault);
442        }
443    } else {
444        // non-memory instruction: execute completely now
445        Fault fault = curStaticInst->execute(this, traceData);
446        postExecute();
447        advanceInst(fault);
448    }
449}
450
451
452bool
453TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
454{
455    cpu->completeIfetch(pkt);
456    return true;
457}
458
459void
460TimingSimpleCPU::IcachePort::recvRetry()
461{
462    // we shouldn't get a retry unless we have a packet that we're
463    // waiting to transmit
464    assert(cpu->ifetch_pkt != NULL);
465    assert(cpu->_status == IcacheRetry);
466    Packet *tmp = cpu->ifetch_pkt;
467    if (sendTiming(tmp)) {
468        cpu->_status = IcacheWaitResponse;
469        cpu->ifetch_pkt = NULL;
470    }
471}
472
473void
474TimingSimpleCPU::completeDataAccess(Packet *pkt)
475{
476    // received a response from the dcache: complete the load or store
477    // instruction
478    assert(pkt->result == Packet::Success);
479    assert(_status == DcacheWaitResponse);
480    _status = Running;
481
482    if (getState() == SimObject::Quiescing) {
483        completeQuiesce();
484
485        delete pkt->req;
486        delete pkt;
487
488        return;
489    }
490
491    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
492
493    delete pkt->req;
494    delete pkt;
495
496    postExecute();
497    advanceInst(fault);
498}
499
500
501void
502TimingSimpleCPU::completeQuiesce()
503{
504    DPRINTF(Config, "Done quiescing\n");
505    changeState(SimObject::QuiescedTiming);
506    quiesceEvent->process();
507}
508
509bool
510TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
511{
512    cpu->completeDataAccess(pkt);
513    return true;
514}
515
516void
517TimingSimpleCPU::DcachePort::recvRetry()
518{
519    // we shouldn't get a retry unless we have a packet that we're
520    // waiting to transmit
521    assert(cpu->dcache_pkt != NULL);
522    assert(cpu->_status == DcacheRetry);
523    Packet *tmp = cpu->dcache_pkt;
524    if (sendTiming(tmp)) {
525        cpu->_status = DcacheWaitResponse;
526        cpu->dcache_pkt = NULL;
527    }
528}
529
530
531////////////////////////////////////////////////////////////////////////
532//
533//  TimingSimpleCPU Simulation Object
534//
535BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
536
537    Param<Counter> max_insts_any_thread;
538    Param<Counter> max_insts_all_threads;
539    Param<Counter> max_loads_any_thread;
540    Param<Counter> max_loads_all_threads;
541    SimObjectParam<MemObject *> mem;
542
543#if FULL_SYSTEM
544    SimObjectParam<AlphaITB *> itb;
545    SimObjectParam<AlphaDTB *> dtb;
546    SimObjectParam<System *> system;
547    Param<int> cpu_id;
548    Param<Tick> profile;
549#else
550    SimObjectParam<Process *> workload;
551#endif // FULL_SYSTEM
552
553    Param<int> clock;
554
555    Param<bool> defer_registration;
556    Param<int> width;
557    Param<bool> function_trace;
558    Param<Tick> function_trace_start;
559    Param<bool> simulate_stalls;
560
561END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
562
563BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
564
565    INIT_PARAM(max_insts_any_thread,
566               "terminate when any thread reaches this inst count"),
567    INIT_PARAM(max_insts_all_threads,
568               "terminate when all threads have reached this inst count"),
569    INIT_PARAM(max_loads_any_thread,
570               "terminate when any thread reaches this load count"),
571    INIT_PARAM(max_loads_all_threads,
572               "terminate when all threads have reached this load count"),
573    INIT_PARAM(mem, "memory"),
574
575#if FULL_SYSTEM
576    INIT_PARAM(itb, "Instruction TLB"),
577    INIT_PARAM(dtb, "Data TLB"),
578    INIT_PARAM(system, "system object"),
579    INIT_PARAM(cpu_id, "processor ID"),
580    INIT_PARAM(profile, ""),
581#else
582    INIT_PARAM(workload, "processes to run"),
583#endif // FULL_SYSTEM
584
585    INIT_PARAM(clock, "clock speed"),
586    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
587    INIT_PARAM(width, "cpu width"),
588    INIT_PARAM(function_trace, "Enable function trace"),
589    INIT_PARAM(function_trace_start, "Cycle to start function trace"),
590    INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
591
592END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
593
594
595CREATE_SIM_OBJECT(TimingSimpleCPU)
596{
597    TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
598    params->name = getInstanceName();
599    params->numberOfThreads = 1;
600    params->max_insts_any_thread = max_insts_any_thread;
601    params->max_insts_all_threads = max_insts_all_threads;
602    params->max_loads_any_thread = max_loads_any_thread;
603    params->max_loads_all_threads = max_loads_all_threads;
604    params->deferRegistration = defer_registration;
605    params->clock = clock;
606    params->functionTrace = function_trace;
607    params->functionTraceStart = function_trace_start;
608    params->mem = mem;
609
610#if FULL_SYSTEM
611    params->itb = itb;
612    params->dtb = dtb;
613    params->system = system;
614    params->cpu_id = cpu_id;
615    params->profile = profile;
616#else
617    params->process = workload;
618#endif
619
620    TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
621    return cpu;
622}
623
624REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)
625
626