timing.cc revision 12284
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015,2017 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "cpu/simple/timing.hh"
45
46#include "arch/locked_mem.hh"
47#include "arch/mmapped_ipr.hh"
48#include "arch/utility.hh"
49#include "base/bigint.hh"
50#include "config/the_isa.hh"
51#include "cpu/exetrace.hh"
52#include "debug/Config.hh"
53#include "debug/Drain.hh"
54#include "debug/ExecFaulting.hh"
55#include "debug/Mwait.hh"
56#include "debug/SimpleCPU.hh"
57#include "mem/packet.hh"
58#include "mem/packet_access.hh"
59#include "params/TimingSimpleCPU.hh"
60#include "sim/faults.hh"
61#include "sim/full_system.hh"
62#include "sim/system.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76    pkt = _pkt;
77    cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83      fetchEvent([this]{ fetch(); }, name())
84{
85    _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97    // Deschedule any power gating event (if any)
98    deschedulePowerGatingEvent();
99
100    if (switchedOut())
101        return DrainState::Drained;
102
103    if (_status == Idle ||
104        (_status == BaseSimpleCPU::Running && isDrained())) {
105        DPRINTF(Drain, "No need to drain.\n");
106        activeThreads.clear();
107        return DrainState::Drained;
108    } else {
109        DPRINTF(Drain, "Requesting drain.\n");
110
111        // The fetch event can become descheduled if a drain didn't
112        // succeed on the first attempt. We need to reschedule it if
113        // the CPU is waiting for a microcode routine to complete.
114        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
115            schedule(fetchEvent, clockEdge());
116
117        return DrainState::Draining;
118    }
119}
120
121void
122TimingSimpleCPU::drainResume()
123{
124    assert(!fetchEvent.scheduled());
125    if (switchedOut())
126        return;
127
128    DPRINTF(SimpleCPU, "Resume\n");
129    verifyMemoryMode();
130
131    assert(!threadContexts.empty());
132
133    _status = BaseSimpleCPU::Idle;
134
135    for (ThreadID tid = 0; tid < numThreads; tid++) {
136        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
137            threadInfo[tid]->notIdleFraction = 1;
138
139            activeThreads.push_back(tid);
140
141            _status = BaseSimpleCPU::Running;
142
143            // Fetch if any threads active
144            if (!fetchEvent.scheduled()) {
145                schedule(fetchEvent, nextCycle());
146            }
147        } else {
148            threadInfo[tid]->notIdleFraction = 0;
149        }
150    }
151
152    // Reschedule any power gating event (if any)
153    schedulePowerGatingEvent();
154
155    system->totalNumInsts = 0;
156}
157
158bool
159TimingSimpleCPU::tryCompleteDrain()
160{
161    if (drainState() != DrainState::Draining)
162        return false;
163
164    DPRINTF(Drain, "tryCompleteDrain.\n");
165    if (!isDrained())
166        return false;
167
168    DPRINTF(Drain, "CPU done draining, processing drain event\n");
169    signalDrainDone();
170
171    return true;
172}
173
174void
175TimingSimpleCPU::switchOut()
176{
177    SimpleExecContext& t_info = *threadInfo[curThread];
178    M5_VAR_USED SimpleThread* thread = t_info.thread;
179
180    BaseSimpleCPU::switchOut();
181
182    assert(!fetchEvent.scheduled());
183    assert(_status == BaseSimpleCPU::Running || _status == Idle);
184    assert(!t_info.stayAtPC);
185    assert(thread->microPC() == 0);
186
187    updateCycleCounts();
188    updateCycleCounters(BaseCPU::CPU_STATE_ON);
189}
190
191
192void
193TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
194{
195    BaseSimpleCPU::takeOverFrom(oldCPU);
196
197    previousCycle = curCycle();
198}
199
200void
201TimingSimpleCPU::verifyMemoryMode() const
202{
203    if (!system->isTimingMode()) {
204        fatal("The timing CPU requires the memory system to be in "
205              "'timing' mode.\n");
206    }
207}
208
209void
210TimingSimpleCPU::activateContext(ThreadID thread_num)
211{
212    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
213
214    assert(thread_num < numThreads);
215
216    threadInfo[thread_num]->notIdleFraction = 1;
217    if (_status == BaseSimpleCPU::Idle)
218        _status = BaseSimpleCPU::Running;
219
220    // kick things off by initiating the fetch of the next instruction
221    if (!fetchEvent.scheduled())
222        schedule(fetchEvent, clockEdge(Cycles(0)));
223
224    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
225         == activeThreads.end()) {
226        activeThreads.push_back(thread_num);
227    }
228
229    BaseCPU::activateContext(thread_num);
230}
231
232
233void
234TimingSimpleCPU::suspendContext(ThreadID thread_num)
235{
236    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
237
238    assert(thread_num < numThreads);
239    activeThreads.remove(thread_num);
240
241    if (_status == Idle)
242        return;
243
244    assert(_status == BaseSimpleCPU::Running);
245
246    threadInfo[thread_num]->notIdleFraction = 0;
247
248    if (activeThreads.empty()) {
249        _status = Idle;
250
251        if (fetchEvent.scheduled()) {
252            deschedule(fetchEvent);
253        }
254    }
255
256    BaseCPU::suspendContext(thread_num);
257}
258
259bool
260TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
261{
262    SimpleExecContext &t_info = *threadInfo[curThread];
263    SimpleThread* thread = t_info.thread;
264
265    RequestPtr req = pkt->req;
266
267    // We're about the issues a locked load, so tell the monitor
268    // to start caring about this address
269    if (pkt->isRead() && pkt->req->isLLSC()) {
270        TheISA::handleLockedRead(thread, pkt->req);
271    }
272    if (req->isMmappedIpr()) {
273        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
274        new IprEvent(pkt, this, clockEdge(delay));
275        _status = DcacheWaitResponse;
276        dcache_pkt = NULL;
277    } else if (!dcachePort.sendTimingReq(pkt)) {
278        _status = DcacheRetry;
279        dcache_pkt = pkt;
280    } else {
281        _status = DcacheWaitResponse;
282        // memory system takes ownership of packet
283        dcache_pkt = NULL;
284    }
285    return dcache_pkt == NULL;
286}
287
288void
289TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
290                          bool read)
291{
292    SimpleExecContext &t_info = *threadInfo[curThread];
293    SimpleThread* thread = t_info.thread;
294
295    PacketPtr pkt = buildPacket(req, read);
296    pkt->dataDynamic<uint8_t>(data);
297    if (req->getFlags().isSet(Request::NO_ACCESS)) {
298        assert(!dcache_pkt);
299        pkt->makeResponse();
300        completeDataAccess(pkt);
301    } else if (read) {
302        handleReadPacket(pkt);
303    } else {
304        bool do_access = true;  // flag to suppress cache access
305
306        if (req->isLLSC()) {
307            do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
308        } else if (req->isCondSwap()) {
309            assert(res);
310            req->setExtraData(*res);
311        }
312
313        if (do_access) {
314            dcache_pkt = pkt;
315            handleWritePacket();
316            threadSnoop(pkt, curThread);
317        } else {
318            _status = DcacheWaitResponse;
319            completeDataAccess(pkt);
320        }
321    }
322}
323
324void
325TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
326                               RequestPtr req, uint8_t *data, bool read)
327{
328    PacketPtr pkt1, pkt2;
329    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
330    if (req->getFlags().isSet(Request::NO_ACCESS)) {
331        assert(!dcache_pkt);
332        pkt1->makeResponse();
333        completeDataAccess(pkt1);
334    } else if (read) {
335        SplitFragmentSenderState * send_state =
336            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
337        if (handleReadPacket(pkt1)) {
338            send_state->clearFromParent();
339            send_state = dynamic_cast<SplitFragmentSenderState *>(
340                    pkt2->senderState);
341            if (handleReadPacket(pkt2)) {
342                send_state->clearFromParent();
343            }
344        }
345    } else {
346        dcache_pkt = pkt1;
347        SplitFragmentSenderState * send_state =
348            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
349        if (handleWritePacket()) {
350            send_state->clearFromParent();
351            dcache_pkt = pkt2;
352            send_state = dynamic_cast<SplitFragmentSenderState *>(
353                    pkt2->senderState);
354            if (handleWritePacket()) {
355                send_state->clearFromParent();
356            }
357        }
358    }
359}
360
361void
362TimingSimpleCPU::translationFault(const Fault &fault)
363{
364    // fault may be NoFault in cases where a fault is suppressed,
365    // for instance prefetches.
366    updateCycleCounts();
367    updateCycleCounters(BaseCPU::CPU_STATE_ON);
368
369    if (traceData) {
370        // Since there was a fault, we shouldn't trace this instruction.
371        delete traceData;
372        traceData = NULL;
373    }
374
375    postExecute();
376
377    advanceInst(fault);
378}
379
380PacketPtr
381TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
382{
383    return read ? Packet::createRead(req) : Packet::createWrite(req);
384}
385
386void
387TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
388        RequestPtr req1, RequestPtr req2, RequestPtr req,
389        uint8_t *data, bool read)
390{
391    pkt1 = pkt2 = NULL;
392
393    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
394
395    if (req->getFlags().isSet(Request::NO_ACCESS)) {
396        pkt1 = buildPacket(req, read);
397        return;
398    }
399
400    pkt1 = buildPacket(req1, read);
401    pkt2 = buildPacket(req2, read);
402
403    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
404
405    pkt->dataDynamic<uint8_t>(data);
406    pkt1->dataStatic<uint8_t>(data);
407    pkt2->dataStatic<uint8_t>(data + req1->getSize());
408
409    SplitMainSenderState * main_send_state = new SplitMainSenderState;
410    pkt->senderState = main_send_state;
411    main_send_state->fragments[0] = pkt1;
412    main_send_state->fragments[1] = pkt2;
413    main_send_state->outstanding = 2;
414    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
415    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
416}
417
418Fault
419TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
420                         unsigned size, Request::Flags flags)
421{
422    panic("readMem() is for atomic accesses, and should "
423          "never be called on TimingSimpleCPU.\n");
424}
425
426Fault
427TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
428                                 Request::Flags flags)
429{
430    SimpleExecContext &t_info = *threadInfo[curThread];
431    SimpleThread* thread = t_info.thread;
432
433    Fault fault;
434    const int asid = 0;
435    const Addr pc = thread->instAddr();
436    unsigned block_size = cacheLineSize();
437    BaseTLB::Mode mode = BaseTLB::Read;
438
439    if (traceData)
440        traceData->setMem(addr, size, flags);
441
442    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
443                                 thread->contextId());
444
445    req->taskId(taskId());
446
447    Addr split_addr = roundDown(addr + size - 1, block_size);
448    assert(split_addr <= addr || split_addr - addr < block_size);
449
450    _status = DTBWaitResponse;
451    if (split_addr > addr) {
452        RequestPtr req1, req2;
453        assert(!req->isLLSC() && !req->isSwap());
454        req->splitOnVaddr(split_addr, req1, req2);
455
456        WholeTranslationState *state =
457            new WholeTranslationState(req, req1, req2, new uint8_t[size],
458                                      NULL, mode);
459        DataTranslation<TimingSimpleCPU *> *trans1 =
460            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
461        DataTranslation<TimingSimpleCPU *> *trans2 =
462            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
463
464        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
465        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
466    } else {
467        WholeTranslationState *state =
468            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
469        DataTranslation<TimingSimpleCPU *> *translation
470            = new DataTranslation<TimingSimpleCPU *>(this, state);
471        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
472    }
473
474    return NoFault;
475}
476
477bool
478TimingSimpleCPU::handleWritePacket()
479{
480    SimpleExecContext &t_info = *threadInfo[curThread];
481    SimpleThread* thread = t_info.thread;
482
483    RequestPtr req = dcache_pkt->req;
484    if (req->isMmappedIpr()) {
485        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
486        new IprEvent(dcache_pkt, this, clockEdge(delay));
487        _status = DcacheWaitResponse;
488        dcache_pkt = NULL;
489    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
490        _status = DcacheRetry;
491    } else {
492        _status = DcacheWaitResponse;
493        // memory system takes ownership of packet
494        dcache_pkt = NULL;
495    }
496    return dcache_pkt == NULL;
497}
498
499Fault
500TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
501                          Addr addr, Request::Flags flags, uint64_t *res)
502{
503    SimpleExecContext &t_info = *threadInfo[curThread];
504    SimpleThread* thread = t_info.thread;
505
506    uint8_t *newData = new uint8_t[size];
507    const int asid = 0;
508    const Addr pc = thread->instAddr();
509    unsigned block_size = cacheLineSize();
510    BaseTLB::Mode mode = BaseTLB::Write;
511
512    if (data == NULL) {
513        assert(flags & Request::CACHE_BLOCK_ZERO);
514        // This must be a cache block cleaning request
515        memset(newData, 0, size);
516    } else {
517        memcpy(newData, data, size);
518    }
519
520    if (traceData)
521        traceData->setMem(addr, size, flags);
522
523    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
524                                 thread->contextId());
525
526    req->taskId(taskId());
527
528    Addr split_addr = roundDown(addr + size - 1, block_size);
529    assert(split_addr <= addr || split_addr - addr < block_size);
530
531    _status = DTBWaitResponse;
532    if (split_addr > addr) {
533        RequestPtr req1, req2;
534        assert(!req->isLLSC() && !req->isSwap());
535        req->splitOnVaddr(split_addr, req1, req2);
536
537        WholeTranslationState *state =
538            new WholeTranslationState(req, req1, req2, newData, res, mode);
539        DataTranslation<TimingSimpleCPU *> *trans1 =
540            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
541        DataTranslation<TimingSimpleCPU *> *trans2 =
542            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
543
544        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
545        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
546    } else {
547        WholeTranslationState *state =
548            new WholeTranslationState(req, newData, res, mode);
549        DataTranslation<TimingSimpleCPU *> *translation =
550            new DataTranslation<TimingSimpleCPU *>(this, state);
551        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
552    }
553
554    // Translation faults will be returned via finishTranslation()
555    return NoFault;
556}
557
558void
559TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
560{
561    for (ThreadID tid = 0; tid < numThreads; tid++) {
562        if (tid != sender) {
563            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
564                wakeup(tid);
565            }
566            TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
567                    dcachePort.cacheBlockMask);
568        }
569    }
570}
571
572void
573TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
574{
575    _status = BaseSimpleCPU::Running;
576
577    if (state->getFault() != NoFault) {
578        if (state->isPrefetch()) {
579            state->setNoFault();
580        }
581        delete [] state->data;
582        state->deleteReqs();
583        translationFault(state->getFault());
584    } else {
585        if (!state->isSplit) {
586            sendData(state->mainReq, state->data, state->res,
587                     state->mode == BaseTLB::Read);
588        } else {
589            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
590                          state->data, state->mode == BaseTLB::Read);
591        }
592    }
593
594    delete state;
595}
596
597
598void
599TimingSimpleCPU::fetch()
600{
601    // Change thread if multi-threaded
602    swapActiveThread();
603
604    SimpleExecContext &t_info = *threadInfo[curThread];
605    SimpleThread* thread = t_info.thread;
606
607    DPRINTF(SimpleCPU, "Fetch\n");
608
609    if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
610        checkForInterrupts();
611        checkPcEventQueue();
612    }
613
614    // We must have just got suspended by a PC event
615    if (_status == Idle)
616        return;
617
618    TheISA::PCState pcState = thread->pcState();
619    bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
620                       !curMacroStaticInst;
621
622    if (needToFetch) {
623        _status = BaseSimpleCPU::Running;
624        Request *ifetch_req = new Request();
625        ifetch_req->taskId(taskId());
626        ifetch_req->setContext(thread->contextId());
627        setupFetchRequest(ifetch_req);
628        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
629        thread->itb->translateTiming(ifetch_req, thread->getTC(),
630                &fetchTranslation, BaseTLB::Execute);
631    } else {
632        _status = IcacheWaitResponse;
633        completeIfetch(NULL);
634
635        updateCycleCounts();
636        updateCycleCounters(BaseCPU::CPU_STATE_ON);
637    }
638}
639
640
641void
642TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
643                           ThreadContext *tc)
644{
645    if (fault == NoFault) {
646        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
647                req->getVaddr(), req->getPaddr());
648        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
649        ifetch_pkt->dataStatic(&inst);
650        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
651
652        if (!icachePort.sendTimingReq(ifetch_pkt)) {
653            // Need to wait for retry
654            _status = IcacheRetry;
655        } else {
656            // Need to wait for cache to respond
657            _status = IcacheWaitResponse;
658            // ownership of packet transferred to memory system
659            ifetch_pkt = NULL;
660        }
661    } else {
662        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
663        delete req;
664        // fetch fault: advance directly to next instruction (fault handler)
665        _status = BaseSimpleCPU::Running;
666        advanceInst(fault);
667    }
668
669    updateCycleCounts();
670    updateCycleCounters(BaseCPU::CPU_STATE_ON);
671}
672
673
674void
675TimingSimpleCPU::advanceInst(const Fault &fault)
676{
677    SimpleExecContext &t_info = *threadInfo[curThread];
678
679    if (_status == Faulting)
680        return;
681
682    if (fault != NoFault) {
683        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
684
685        advancePC(fault);
686
687        Tick stall = dynamic_pointer_cast<SyscallRetryFault>(fault) ?
688                     clockEdge(syscallRetryLatency) : clockEdge();
689
690        reschedule(fetchEvent, stall, true);
691
692        _status = Faulting;
693        return;
694    }
695
696
697    if (!t_info.stayAtPC)
698        advancePC(fault);
699
700    if (tryCompleteDrain())
701            return;
702
703    if (_status == BaseSimpleCPU::Running) {
704        // kick off fetch of next instruction... callback from icache
705        // response will cause that instruction to be executed,
706        // keeping the CPU running.
707        fetch();
708    }
709}
710
711
712void
713TimingSimpleCPU::completeIfetch(PacketPtr pkt)
714{
715    SimpleExecContext& t_info = *threadInfo[curThread];
716
717    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
718            pkt->getAddr() : 0);
719
720    // received a response from the icache: execute the received
721    // instruction
722    assert(!pkt || !pkt->isError());
723    assert(_status == IcacheWaitResponse);
724
725    _status = BaseSimpleCPU::Running;
726
727    updateCycleCounts();
728    updateCycleCounters(BaseCPU::CPU_STATE_ON);
729
730    if (pkt)
731        pkt->req->setAccessLatency();
732
733
734    preExecute();
735    if (curStaticInst && curStaticInst->isMemRef()) {
736        // load or store: just send to dcache
737        Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
738
739        // If we're not running now the instruction will complete in a dcache
740        // response callback or the instruction faulted and has started an
741        // ifetch
742        if (_status == BaseSimpleCPU::Running) {
743            if (fault != NoFault && traceData) {
744                // If there was a fault, we shouldn't trace this instruction.
745                delete traceData;
746                traceData = NULL;
747            }
748
749            postExecute();
750            // @todo remove me after debugging with legion done
751            if (curStaticInst && (!curStaticInst->isMicroop() ||
752                        curStaticInst->isFirstMicroop()))
753                instCnt++;
754            advanceInst(fault);
755        }
756    } else if (curStaticInst) {
757        // non-memory instruction: execute completely now
758        Fault fault = curStaticInst->execute(&t_info, traceData);
759
760        // keep an instruction count
761        if (fault == NoFault)
762            countInst();
763        else if (traceData && !DTRACE(ExecFaulting)) {
764            delete traceData;
765            traceData = NULL;
766        }
767
768        postExecute();
769        // @todo remove me after debugging with legion done
770        if (curStaticInst && (!curStaticInst->isMicroop() ||
771                curStaticInst->isFirstMicroop()))
772            instCnt++;
773        advanceInst(fault);
774    } else {
775        advanceInst(NoFault);
776    }
777
778    if (pkt) {
779        delete pkt->req;
780        delete pkt;
781    }
782}
783
784void
785TimingSimpleCPU::IcachePort::ITickEvent::process()
786{
787    cpu->completeIfetch(pkt);
788}
789
790bool
791TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
792{
793    DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
794    // we should only ever see one response per cycle since we only
795    // issue a new request once this response is sunk
796    assert(!tickEvent.scheduled());
797    // delay processing of returned data until next CPU clock edge
798    tickEvent.schedule(pkt, cpu->clockEdge());
799
800    return true;
801}
802
803void
804TimingSimpleCPU::IcachePort::recvReqRetry()
805{
806    // we shouldn't get a retry unless we have a packet that we're
807    // waiting to transmit
808    assert(cpu->ifetch_pkt != NULL);
809    assert(cpu->_status == IcacheRetry);
810    PacketPtr tmp = cpu->ifetch_pkt;
811    if (sendTimingReq(tmp)) {
812        cpu->_status = IcacheWaitResponse;
813        cpu->ifetch_pkt = NULL;
814    }
815}
816
817void
818TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
819{
820    // received a response from the dcache: complete the load or store
821    // instruction
822    assert(!pkt->isError());
823    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
824           pkt->req->getFlags().isSet(Request::NO_ACCESS));
825
826    pkt->req->setAccessLatency();
827
828    updateCycleCounts();
829    updateCycleCounters(BaseCPU::CPU_STATE_ON);
830
831    if (pkt->senderState) {
832        SplitFragmentSenderState * send_state =
833            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
834        assert(send_state);
835        delete pkt->req;
836        delete pkt;
837        PacketPtr big_pkt = send_state->bigPkt;
838        delete send_state;
839
840        SplitMainSenderState * main_send_state =
841            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
842        assert(main_send_state);
843        // Record the fact that this packet is no longer outstanding.
844        assert(main_send_state->outstanding != 0);
845        main_send_state->outstanding--;
846
847        if (main_send_state->outstanding) {
848            return;
849        } else {
850            delete main_send_state;
851            big_pkt->senderState = NULL;
852            pkt = big_pkt;
853        }
854    }
855
856    _status = BaseSimpleCPU::Running;
857
858    Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
859                                             traceData);
860
861    // keep an instruction count
862    if (fault == NoFault)
863        countInst();
864    else if (traceData) {
865        // If there was a fault, we shouldn't trace this instruction.
866        delete traceData;
867        traceData = NULL;
868    }
869
870    delete pkt->req;
871    delete pkt;
872
873    postExecute();
874
875    advanceInst(fault);
876}
877
878void
879TimingSimpleCPU::updateCycleCounts()
880{
881    const Cycles delta(curCycle() - previousCycle);
882
883    numCycles += delta;
884
885    previousCycle = curCycle();
886}
887
888void
889TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
890{
891    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
892        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
893            cpu->wakeup(tid);
894        }
895    }
896
897    // Making it uniform across all CPUs:
898    // The CPUs need to be woken up only on an invalidation packet (when using caches)
899    // or on an incoming write packet (when not using caches)
900    // It is not necessary to wake up the processor on all incoming packets
901    if (pkt->isInvalidate() || pkt->isWrite()) {
902        for (auto &t_info : cpu->threadInfo) {
903            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
904        }
905    }
906}
907
908void
909TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
910{
911    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
912        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
913            cpu->wakeup(tid);
914        }
915    }
916}
917
918bool
919TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
920{
921    DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
922
923    // The timing CPU is not really ticked, instead it relies on the
924    // memory system (fetch and load/store) to set the pace.
925    if (!tickEvent.scheduled()) {
926        // Delay processing of returned data until next CPU clock edge
927        tickEvent.schedule(pkt, cpu->clockEdge());
928        return true;
929    } else {
930        // In the case of a split transaction and a cache that is
931        // faster than a CPU we could get two responses in the
932        // same tick, delay the second one
933        if (!retryRespEvent.scheduled())
934            cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
935        return false;
936    }
937}
938
939void
940TimingSimpleCPU::DcachePort::DTickEvent::process()
941{
942    cpu->completeDataAccess(pkt);
943}
944
945void
946TimingSimpleCPU::DcachePort::recvReqRetry()
947{
948    // we shouldn't get a retry unless we have a packet that we're
949    // waiting to transmit
950    assert(cpu->dcache_pkt != NULL);
951    assert(cpu->_status == DcacheRetry);
952    PacketPtr tmp = cpu->dcache_pkt;
953    if (tmp->senderState) {
954        // This is a packet from a split access.
955        SplitFragmentSenderState * send_state =
956            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
957        assert(send_state);
958        PacketPtr big_pkt = send_state->bigPkt;
959
960        SplitMainSenderState * main_send_state =
961            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
962        assert(main_send_state);
963
964        if (sendTimingReq(tmp)) {
965            // If we were able to send without retrying, record that fact
966            // and try sending the other fragment.
967            send_state->clearFromParent();
968            int other_index = main_send_state->getPendingFragment();
969            if (other_index > 0) {
970                tmp = main_send_state->fragments[other_index];
971                cpu->dcache_pkt = tmp;
972                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
973                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
974                    main_send_state->fragments[other_index] = NULL;
975                }
976            } else {
977                cpu->_status = DcacheWaitResponse;
978                // memory system takes ownership of packet
979                cpu->dcache_pkt = NULL;
980            }
981        }
982    } else if (sendTimingReq(tmp)) {
983        cpu->_status = DcacheWaitResponse;
984        // memory system takes ownership of packet
985        cpu->dcache_pkt = NULL;
986    }
987}
988
989TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
990    Tick t)
991    : pkt(_pkt), cpu(_cpu)
992{
993    cpu->schedule(this, t);
994}
995
996void
997TimingSimpleCPU::IprEvent::process()
998{
999    cpu->completeDataAccess(pkt);
1000}
1001
1002const char *
1003TimingSimpleCPU::IprEvent::description() const
1004{
1005    return "Timing Simple CPU Delay IPR event";
1006}
1007
1008
1009void
1010TimingSimpleCPU::printAddr(Addr a)
1011{
1012    dcachePort.printAddr(a);
1013}
1014
1015
1016////////////////////////////////////////////////////////////////////////
1017//
1018//  TimingSimpleCPU Simulation Object
1019//
1020TimingSimpleCPU *
1021TimingSimpleCPUParams::create()
1022{
1023    return new TimingSimpleCPU(this);
1024}
1025