timing.cc revision 11526:5b81895e5d5e
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76    pkt = _pkt;
77    cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83      fetchEvent(this)
84{
85    _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97    if (switchedOut())
98        return DrainState::Drained;
99
100    if (_status == Idle ||
101        (_status == BaseSimpleCPU::Running && isDrained())) {
102        DPRINTF(Drain, "No need to drain.\n");
103        activeThreads.clear();
104        return DrainState::Drained;
105    } else {
106        DPRINTF(Drain, "Requesting drain.\n");
107
108        // The fetch event can become descheduled if a drain didn't
109        // succeed on the first attempt. We need to reschedule it if
110        // the CPU is waiting for a microcode routine to complete.
111        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112            schedule(fetchEvent, clockEdge());
113
114        return DrainState::Draining;
115    }
116}
117
118void
119TimingSimpleCPU::drainResume()
120{
121    assert(!fetchEvent.scheduled());
122    if (switchedOut())
123        return;
124
125    DPRINTF(SimpleCPU, "Resume\n");
126    verifyMemoryMode();
127
128    assert(!threadContexts.empty());
129
130    _status = BaseSimpleCPU::Idle;
131
132    for (ThreadID tid = 0; tid < numThreads; tid++) {
133        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134            threadInfo[tid]->notIdleFraction = 1;
135
136            activeThreads.push_back(tid);
137
138            _status = BaseSimpleCPU::Running;
139
140            // Fetch if any threads active
141            if (!fetchEvent.scheduled()) {
142                schedule(fetchEvent, nextCycle());
143            }
144        } else {
145            threadInfo[tid]->notIdleFraction = 0;
146        }
147    }
148
149    system->totalNumInsts = 0;
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155    if (drainState() != DrainState::Draining)
156        return false;
157
158    DPRINTF(Drain, "tryCompleteDrain.\n");
159    if (!isDrained())
160        return false;
161
162    DPRINTF(Drain, "CPU done draining, processing drain event\n");
163    signalDrainDone();
164
165    return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    SimpleExecContext& t_info = *threadInfo[curThread];
172    M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174    BaseSimpleCPU::switchOut();
175
176    assert(!fetchEvent.scheduled());
177    assert(_status == BaseSimpleCPU::Running || _status == Idle);
178    assert(!t_info.stayAtPC);
179    assert(thread->microPC() == 0);
180
181    updateCycleCounts();
182}
183
184
185void
186TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187{
188    BaseSimpleCPU::takeOverFrom(oldCPU);
189
190    previousCycle = curCycle();
191}
192
193void
194TimingSimpleCPU::verifyMemoryMode() const
195{
196    if (!system->isTimingMode()) {
197        fatal("The timing CPU requires the memory system to be in "
198              "'timing' mode.\n");
199    }
200}
201
202void
203TimingSimpleCPU::activateContext(ThreadID thread_num)
204{
205    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207    assert(thread_num < numThreads);
208
209    threadInfo[thread_num]->notIdleFraction = 1;
210    if (_status == BaseSimpleCPU::Idle)
211        _status = BaseSimpleCPU::Running;
212
213    // kick things off by initiating the fetch of the next instruction
214    if (!fetchEvent.scheduled())
215        schedule(fetchEvent, clockEdge(Cycles(0)));
216
217    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218         == activeThreads.end()) {
219        activeThreads.push_back(thread_num);
220    }
221
222    BaseCPU::activateContext(thread_num);
223}
224
225
226void
227TimingSimpleCPU::suspendContext(ThreadID thread_num)
228{
229    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
230
231    assert(thread_num < numThreads);
232    activeThreads.remove(thread_num);
233
234    if (_status == Idle)
235        return;
236
237    assert(_status == BaseSimpleCPU::Running);
238
239    threadInfo[thread_num]->notIdleFraction = 0;
240
241    if (activeThreads.empty()) {
242        _status = Idle;
243
244        if (fetchEvent.scheduled()) {
245            deschedule(fetchEvent);
246        }
247    }
248
249    BaseCPU::suspendContext(thread_num);
250}
251
252bool
253TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
254{
255    SimpleExecContext &t_info = *threadInfo[curThread];
256    SimpleThread* thread = t_info.thread;
257
258    RequestPtr req = pkt->req;
259
260    // We're about the issues a locked load, so tell the monitor
261    // to start caring about this address
262    if (pkt->isRead() && pkt->req->isLLSC()) {
263        TheISA::handleLockedRead(thread, pkt->req);
264    }
265    if (req->isMmappedIpr()) {
266        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
267        new IprEvent(pkt, this, clockEdge(delay));
268        _status = DcacheWaitResponse;
269        dcache_pkt = NULL;
270    } else if (!dcachePort.sendTimingReq(pkt)) {
271        _status = DcacheRetry;
272        dcache_pkt = pkt;
273    } else {
274        _status = DcacheWaitResponse;
275        // memory system takes ownership of packet
276        dcache_pkt = NULL;
277    }
278    return dcache_pkt == NULL;
279}
280
281void
282TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
283                          bool read)
284{
285    SimpleExecContext &t_info = *threadInfo[curThread];
286    SimpleThread* thread = t_info.thread;
287
288    PacketPtr pkt = buildPacket(req, read);
289    pkt->dataDynamic<uint8_t>(data);
290    if (req->getFlags().isSet(Request::NO_ACCESS)) {
291        assert(!dcache_pkt);
292        pkt->makeResponse();
293        completeDataAccess(pkt);
294    } else if (read) {
295        handleReadPacket(pkt);
296    } else {
297        bool do_access = true;  // flag to suppress cache access
298
299        if (req->isLLSC()) {
300            do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
301        } else if (req->isCondSwap()) {
302            assert(res);
303            req->setExtraData(*res);
304        }
305
306        if (do_access) {
307            dcache_pkt = pkt;
308            handleWritePacket();
309            threadSnoop(pkt, curThread);
310        } else {
311            _status = DcacheWaitResponse;
312            completeDataAccess(pkt);
313        }
314    }
315}
316
317void
318TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
319                               RequestPtr req, uint8_t *data, bool read)
320{
321    PacketPtr pkt1, pkt2;
322    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
323    if (req->getFlags().isSet(Request::NO_ACCESS)) {
324        assert(!dcache_pkt);
325        pkt1->makeResponse();
326        completeDataAccess(pkt1);
327    } else if (read) {
328        SplitFragmentSenderState * send_state =
329            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
330        if (handleReadPacket(pkt1)) {
331            send_state->clearFromParent();
332            send_state = dynamic_cast<SplitFragmentSenderState *>(
333                    pkt2->senderState);
334            if (handleReadPacket(pkt2)) {
335                send_state->clearFromParent();
336            }
337        }
338    } else {
339        dcache_pkt = pkt1;
340        SplitFragmentSenderState * send_state =
341            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
342        if (handleWritePacket()) {
343            send_state->clearFromParent();
344            dcache_pkt = pkt2;
345            send_state = dynamic_cast<SplitFragmentSenderState *>(
346                    pkt2->senderState);
347            if (handleWritePacket()) {
348                send_state->clearFromParent();
349            }
350        }
351    }
352}
353
354void
355TimingSimpleCPU::translationFault(const Fault &fault)
356{
357    // fault may be NoFault in cases where a fault is suppressed,
358    // for instance prefetches.
359    updateCycleCounts();
360
361    if (traceData) {
362        // Since there was a fault, we shouldn't trace this instruction.
363        delete traceData;
364        traceData = NULL;
365    }
366
367    postExecute();
368
369    advanceInst(fault);
370}
371
372PacketPtr
373TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
374{
375    return read ? Packet::createRead(req) : Packet::createWrite(req);
376}
377
378void
379TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
380        RequestPtr req1, RequestPtr req2, RequestPtr req,
381        uint8_t *data, bool read)
382{
383    pkt1 = pkt2 = NULL;
384
385    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
386
387    if (req->getFlags().isSet(Request::NO_ACCESS)) {
388        pkt1 = buildPacket(req, read);
389        return;
390    }
391
392    pkt1 = buildPacket(req1, read);
393    pkt2 = buildPacket(req2, read);
394
395    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
396
397    pkt->dataDynamic<uint8_t>(data);
398    pkt1->dataStatic<uint8_t>(data);
399    pkt2->dataStatic<uint8_t>(data + req1->getSize());
400
401    SplitMainSenderState * main_send_state = new SplitMainSenderState;
402    pkt->senderState = main_send_state;
403    main_send_state->fragments[0] = pkt1;
404    main_send_state->fragments[1] = pkt2;
405    main_send_state->outstanding = 2;
406    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
407    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
408}
409
410Fault
411TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
412                         unsigned size, unsigned flags)
413{
414    panic("readMem() is for atomic accesses, and should "
415          "never be called on TimingSimpleCPU.\n");
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size, unsigned flags)
420{
421    SimpleExecContext &t_info = *threadInfo[curThread];
422    SimpleThread* thread = t_info.thread;
423
424    Fault fault;
425    const int asid = 0;
426    const Addr pc = thread->instAddr();
427    unsigned block_size = cacheLineSize();
428    BaseTLB::Mode mode = BaseTLB::Read;
429
430    if (traceData)
431        traceData->setMem(addr, size, flags);
432
433    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
434                                 thread->contextId());
435
436    req->taskId(taskId());
437
438    Addr split_addr = roundDown(addr + size - 1, block_size);
439    assert(split_addr <= addr || split_addr - addr < block_size);
440
441    _status = DTBWaitResponse;
442    if (split_addr > addr) {
443        RequestPtr req1, req2;
444        assert(!req->isLLSC() && !req->isSwap());
445        req->splitOnVaddr(split_addr, req1, req2);
446
447        WholeTranslationState *state =
448            new WholeTranslationState(req, req1, req2, new uint8_t[size],
449                                      NULL, mode);
450        DataTranslation<TimingSimpleCPU *> *trans1 =
451            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
452        DataTranslation<TimingSimpleCPU *> *trans2 =
453            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
454
455        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
456        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
457    } else {
458        WholeTranslationState *state =
459            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
460        DataTranslation<TimingSimpleCPU *> *translation
461            = new DataTranslation<TimingSimpleCPU *>(this, state);
462        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
463    }
464
465    return NoFault;
466}
467
468bool
469TimingSimpleCPU::handleWritePacket()
470{
471    SimpleExecContext &t_info = *threadInfo[curThread];
472    SimpleThread* thread = t_info.thread;
473
474    RequestPtr req = dcache_pkt->req;
475    if (req->isMmappedIpr()) {
476        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
477        new IprEvent(dcache_pkt, this, clockEdge(delay));
478        _status = DcacheWaitResponse;
479        dcache_pkt = NULL;
480    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
481        _status = DcacheRetry;
482    } else {
483        _status = DcacheWaitResponse;
484        // memory system takes ownership of packet
485        dcache_pkt = NULL;
486    }
487    return dcache_pkt == NULL;
488}
489
490Fault
491TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
492                          Addr addr, unsigned flags, uint64_t *res)
493{
494    SimpleExecContext &t_info = *threadInfo[curThread];
495    SimpleThread* thread = t_info.thread;
496
497    uint8_t *newData = new uint8_t[size];
498    const int asid = 0;
499    const Addr pc = thread->instAddr();
500    unsigned block_size = cacheLineSize();
501    BaseTLB::Mode mode = BaseTLB::Write;
502
503    if (data == NULL) {
504        assert(flags & Request::CACHE_BLOCK_ZERO);
505        // This must be a cache block cleaning request
506        memset(newData, 0, size);
507    } else {
508        memcpy(newData, data, size);
509    }
510
511    if (traceData)
512        traceData->setMem(addr, size, flags);
513
514    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
515                                 thread->contextId());
516
517    req->taskId(taskId());
518
519    Addr split_addr = roundDown(addr + size - 1, block_size);
520    assert(split_addr <= addr || split_addr - addr < block_size);
521
522    _status = DTBWaitResponse;
523    if (split_addr > addr) {
524        RequestPtr req1, req2;
525        assert(!req->isLLSC() && !req->isSwap());
526        req->splitOnVaddr(split_addr, req1, req2);
527
528        WholeTranslationState *state =
529            new WholeTranslationState(req, req1, req2, newData, res, mode);
530        DataTranslation<TimingSimpleCPU *> *trans1 =
531            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
532        DataTranslation<TimingSimpleCPU *> *trans2 =
533            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
534
535        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
536        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
537    } else {
538        WholeTranslationState *state =
539            new WholeTranslationState(req, newData, res, mode);
540        DataTranslation<TimingSimpleCPU *> *translation =
541            new DataTranslation<TimingSimpleCPU *>(this, state);
542        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
543    }
544
545    // Translation faults will be returned via finishTranslation()
546    return NoFault;
547}
548
549void
550TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
551{
552    for (ThreadID tid = 0; tid < numThreads; tid++) {
553        if (tid != sender) {
554            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
555                wakeup(tid);
556            }
557            TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
558                    dcachePort.cacheBlockMask);
559        }
560    }
561}
562
563void
564TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
565{
566    _status = BaseSimpleCPU::Running;
567
568    if (state->getFault() != NoFault) {
569        if (state->isPrefetch()) {
570            state->setNoFault();
571        }
572        delete [] state->data;
573        state->deleteReqs();
574        translationFault(state->getFault());
575    } else {
576        if (!state->isSplit) {
577            sendData(state->mainReq, state->data, state->res,
578                     state->mode == BaseTLB::Read);
579        } else {
580            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
581                          state->data, state->mode == BaseTLB::Read);
582        }
583    }
584
585    delete state;
586}
587
588
589void
590TimingSimpleCPU::fetch()
591{
592    // Change thread if multi-threaded
593    swapActiveThread();
594
595    SimpleExecContext &t_info = *threadInfo[curThread];
596    SimpleThread* thread = t_info.thread;
597
598    DPRINTF(SimpleCPU, "Fetch\n");
599
600    if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
601        checkForInterrupts();
602        checkPcEventQueue();
603    }
604
605    // We must have just got suspended by a PC event
606    if (_status == Idle)
607        return;
608
609    TheISA::PCState pcState = thread->pcState();
610    bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
611                       !curMacroStaticInst;
612
613    if (needToFetch) {
614        _status = BaseSimpleCPU::Running;
615        Request *ifetch_req = new Request();
616        ifetch_req->taskId(taskId());
617        ifetch_req->setContext(thread->contextId());
618        setupFetchRequest(ifetch_req);
619        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
620        thread->itb->translateTiming(ifetch_req, thread->getTC(),
621                &fetchTranslation, BaseTLB::Execute);
622    } else {
623        _status = IcacheWaitResponse;
624        completeIfetch(NULL);
625
626        updateCycleCounts();
627    }
628}
629
630
631void
632TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
633                           ThreadContext *tc)
634{
635    if (fault == NoFault) {
636        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
637                req->getVaddr(), req->getPaddr());
638        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
639        ifetch_pkt->dataStatic(&inst);
640        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
641
642        if (!icachePort.sendTimingReq(ifetch_pkt)) {
643            // Need to wait for retry
644            _status = IcacheRetry;
645        } else {
646            // Need to wait for cache to respond
647            _status = IcacheWaitResponse;
648            // ownership of packet transferred to memory system
649            ifetch_pkt = NULL;
650        }
651    } else {
652        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
653        delete req;
654        // fetch fault: advance directly to next instruction (fault handler)
655        _status = BaseSimpleCPU::Running;
656        advanceInst(fault);
657    }
658
659    updateCycleCounts();
660}
661
662
663void
664TimingSimpleCPU::advanceInst(const Fault &fault)
665{
666    SimpleExecContext &t_info = *threadInfo[curThread];
667
668    if (_status == Faulting)
669        return;
670
671    if (fault != NoFault) {
672        advancePC(fault);
673        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
674        reschedule(fetchEvent, clockEdge(), true);
675        _status = Faulting;
676        return;
677    }
678
679
680    if (!t_info.stayAtPC)
681        advancePC(fault);
682
683    if (tryCompleteDrain())
684            return;
685
686    if (_status == BaseSimpleCPU::Running) {
687        // kick off fetch of next instruction... callback from icache
688        // response will cause that instruction to be executed,
689        // keeping the CPU running.
690        fetch();
691    }
692}
693
694
695void
696TimingSimpleCPU::completeIfetch(PacketPtr pkt)
697{
698    SimpleExecContext& t_info = *threadInfo[curThread];
699
700    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
701            pkt->getAddr() : 0);
702
703    // received a response from the icache: execute the received
704    // instruction
705    assert(!pkt || !pkt->isError());
706    assert(_status == IcacheWaitResponse);
707
708    _status = BaseSimpleCPU::Running;
709
710    updateCycleCounts();
711
712    if (pkt)
713        pkt->req->setAccessLatency();
714
715
716    preExecute();
717    if (curStaticInst && curStaticInst->isMemRef()) {
718        // load or store: just send to dcache
719        Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
720
721        // If we're not running now the instruction will complete in a dcache
722        // response callback or the instruction faulted and has started an
723        // ifetch
724        if (_status == BaseSimpleCPU::Running) {
725            if (fault != NoFault && traceData) {
726                // If there was a fault, we shouldn't trace this instruction.
727                delete traceData;
728                traceData = NULL;
729            }
730
731            postExecute();
732            // @todo remove me after debugging with legion done
733            if (curStaticInst && (!curStaticInst->isMicroop() ||
734                        curStaticInst->isFirstMicroop()))
735                instCnt++;
736            advanceInst(fault);
737        }
738    } else if (curStaticInst) {
739        // non-memory instruction: execute completely now
740        Fault fault = curStaticInst->execute(&t_info, traceData);
741
742        // keep an instruction count
743        if (fault == NoFault)
744            countInst();
745        else if (traceData && !DTRACE(ExecFaulting)) {
746            delete traceData;
747            traceData = NULL;
748        }
749
750        postExecute();
751        // @todo remove me after debugging with legion done
752        if (curStaticInst && (!curStaticInst->isMicroop() ||
753                curStaticInst->isFirstMicroop()))
754            instCnt++;
755        advanceInst(fault);
756    } else {
757        advanceInst(NoFault);
758    }
759
760    if (pkt) {
761        delete pkt->req;
762        delete pkt;
763    }
764}
765
766void
767TimingSimpleCPU::IcachePort::ITickEvent::process()
768{
769    cpu->completeIfetch(pkt);
770}
771
772bool
773TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
774{
775    DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
776    // we should only ever see one response per cycle since we only
777    // issue a new request once this response is sunk
778    assert(!tickEvent.scheduled());
779    // delay processing of returned data until next CPU clock edge
780    tickEvent.schedule(pkt, cpu->clockEdge());
781
782    return true;
783}
784
785void
786TimingSimpleCPU::IcachePort::recvReqRetry()
787{
788    // we shouldn't get a retry unless we have a packet that we're
789    // waiting to transmit
790    assert(cpu->ifetch_pkt != NULL);
791    assert(cpu->_status == IcacheRetry);
792    PacketPtr tmp = cpu->ifetch_pkt;
793    if (sendTimingReq(tmp)) {
794        cpu->_status = IcacheWaitResponse;
795        cpu->ifetch_pkt = NULL;
796    }
797}
798
799void
800TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
801{
802    // received a response from the dcache: complete the load or store
803    // instruction
804    assert(!pkt->isError());
805    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
806           pkt->req->getFlags().isSet(Request::NO_ACCESS));
807
808    pkt->req->setAccessLatency();
809
810    updateCycleCounts();
811
812    if (pkt->senderState) {
813        SplitFragmentSenderState * send_state =
814            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
815        assert(send_state);
816        delete pkt->req;
817        delete pkt;
818        PacketPtr big_pkt = send_state->bigPkt;
819        delete send_state;
820
821        SplitMainSenderState * main_send_state =
822            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
823        assert(main_send_state);
824        // Record the fact that this packet is no longer outstanding.
825        assert(main_send_state->outstanding != 0);
826        main_send_state->outstanding--;
827
828        if (main_send_state->outstanding) {
829            return;
830        } else {
831            delete main_send_state;
832            big_pkt->senderState = NULL;
833            pkt = big_pkt;
834        }
835    }
836
837    _status = BaseSimpleCPU::Running;
838
839    Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
840                                             traceData);
841
842    // keep an instruction count
843    if (fault == NoFault)
844        countInst();
845    else if (traceData) {
846        // If there was a fault, we shouldn't trace this instruction.
847        delete traceData;
848        traceData = NULL;
849    }
850
851    delete pkt->req;
852    delete pkt;
853
854    postExecute();
855
856    advanceInst(fault);
857}
858
859void
860TimingSimpleCPU::updateCycleCounts()
861{
862    const Cycles delta(curCycle() - previousCycle);
863
864    numCycles += delta;
865    ppCycles->notify(delta);
866
867    previousCycle = curCycle();
868}
869
870void
871TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
872{
873    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
874        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
875            cpu->wakeup(tid);
876        }
877    }
878
879    // Making it uniform across all CPUs:
880    // The CPUs need to be woken up only on an invalidation packet (when using caches)
881    // or on an incoming write packet (when not using caches)
882    // It is not necessary to wake up the processor on all incoming packets
883    if (pkt->isInvalidate() || pkt->isWrite()) {
884        for (auto &t_info : cpu->threadInfo) {
885            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
886        }
887    }
888}
889
890void
891TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
892{
893    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
894        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
895            cpu->wakeup(tid);
896        }
897    }
898}
899
900bool
901TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
902{
903    DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
904
905    // The timing CPU is not really ticked, instead it relies on the
906    // memory system (fetch and load/store) to set the pace.
907    if (!tickEvent.scheduled()) {
908        // Delay processing of returned data until next CPU clock edge
909        tickEvent.schedule(pkt, cpu->clockEdge());
910        return true;
911    } else {
912        // In the case of a split transaction and a cache that is
913        // faster than a CPU we could get two responses in the
914        // same tick, delay the second one
915        if (!retryRespEvent.scheduled())
916            cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
917        return false;
918    }
919}
920
921void
922TimingSimpleCPU::DcachePort::DTickEvent::process()
923{
924    cpu->completeDataAccess(pkt);
925}
926
927void
928TimingSimpleCPU::DcachePort::recvReqRetry()
929{
930    // we shouldn't get a retry unless we have a packet that we're
931    // waiting to transmit
932    assert(cpu->dcache_pkt != NULL);
933    assert(cpu->_status == DcacheRetry);
934    PacketPtr tmp = cpu->dcache_pkt;
935    if (tmp->senderState) {
936        // This is a packet from a split access.
937        SplitFragmentSenderState * send_state =
938            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
939        assert(send_state);
940        PacketPtr big_pkt = send_state->bigPkt;
941
942        SplitMainSenderState * main_send_state =
943            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
944        assert(main_send_state);
945
946        if (sendTimingReq(tmp)) {
947            // If we were able to send without retrying, record that fact
948            // and try sending the other fragment.
949            send_state->clearFromParent();
950            int other_index = main_send_state->getPendingFragment();
951            if (other_index > 0) {
952                tmp = main_send_state->fragments[other_index];
953                cpu->dcache_pkt = tmp;
954                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
955                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
956                    main_send_state->fragments[other_index] = NULL;
957                }
958            } else {
959                cpu->_status = DcacheWaitResponse;
960                // memory system takes ownership of packet
961                cpu->dcache_pkt = NULL;
962            }
963        }
964    } else if (sendTimingReq(tmp)) {
965        cpu->_status = DcacheWaitResponse;
966        // memory system takes ownership of packet
967        cpu->dcache_pkt = NULL;
968    }
969}
970
971TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
972    Tick t)
973    : pkt(_pkt), cpu(_cpu)
974{
975    cpu->schedule(this, t);
976}
977
978void
979TimingSimpleCPU::IprEvent::process()
980{
981    cpu->completeDataAccess(pkt);
982}
983
984const char *
985TimingSimpleCPU::IprEvent::description() const
986{
987    return "Timing Simple CPU Delay IPR event";
988}
989
990
991void
992TimingSimpleCPU::printAddr(Addr a)
993{
994    dcachePort.printAddr(a);
995}
996
997
998////////////////////////////////////////////////////////////////////////
999//
1000//  TimingSimpleCPU Simulation Object
1001//
1002TimingSimpleCPU *
1003TimingSimpleCPUParams::create()
1004{
1005    return new TimingSimpleCPU(this);
1006}
1007