timing.cc revision 11148
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76    pkt = _pkt;
77    cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83      fetchEvent(this)
84{
85    _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97    if (switchedOut())
98        return DrainState::Drained;
99
100    if (_status == Idle ||
101        (_status == BaseSimpleCPU::Running && isDrained())) {
102        DPRINTF(Drain, "No need to drain.\n");
103        activeThreads.clear();
104        return DrainState::Drained;
105    } else {
106        DPRINTF(Drain, "Requesting drain.\n");
107
108        // The fetch event can become descheduled if a drain didn't
109        // succeed on the first attempt. We need to reschedule it if
110        // the CPU is waiting for a microcode routine to complete.
111        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112            schedule(fetchEvent, clockEdge());
113
114        return DrainState::Draining;
115    }
116}
117
118void
119TimingSimpleCPU::drainResume()
120{
121    assert(!fetchEvent.scheduled());
122    if (switchedOut())
123        return;
124
125    DPRINTF(SimpleCPU, "Resume\n");
126    verifyMemoryMode();
127
128    assert(!threadContexts.empty());
129
130    _status = BaseSimpleCPU::Idle;
131
132    for (ThreadID tid = 0; tid < numThreads; tid++) {
133        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134            threadInfo[tid]->notIdleFraction = 1;
135
136            activeThreads.push_back(tid);
137
138            _status = BaseSimpleCPU::Running;
139
140            // Fetch if any threads active
141            if (!fetchEvent.scheduled()) {
142                schedule(fetchEvent, nextCycle());
143            }
144        } else {
145            threadInfo[tid]->notIdleFraction = 0;
146        }
147    }
148
149    system->totalNumInsts = 0;
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155    if (drainState() != DrainState::Draining)
156        return false;
157
158    DPRINTF(Drain, "tryCompleteDrain.\n");
159    if (!isDrained())
160        return false;
161
162    DPRINTF(Drain, "CPU done draining, processing drain event\n");
163    signalDrainDone();
164
165    return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    SimpleExecContext& t_info = *threadInfo[curThread];
172    M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174    BaseSimpleCPU::switchOut();
175
176    assert(!fetchEvent.scheduled());
177    assert(_status == BaseSimpleCPU::Running || _status == Idle);
178    assert(!t_info.stayAtPC);
179    assert(thread->microPC() == 0);
180
181    updateCycleCounts();
182}
183
184
185void
186TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187{
188    BaseSimpleCPU::takeOverFrom(oldCPU);
189
190    previousCycle = curCycle();
191}
192
193void
194TimingSimpleCPU::verifyMemoryMode() const
195{
196    if (!system->isTimingMode()) {
197        fatal("The timing CPU requires the memory system to be in "
198              "'timing' mode.\n");
199    }
200}
201
202void
203TimingSimpleCPU::activateContext(ThreadID thread_num)
204{
205    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207    assert(thread_num < numThreads);
208
209    threadInfo[thread_num]->notIdleFraction = 1;
210    if (_status == BaseSimpleCPU::Idle)
211        _status = BaseSimpleCPU::Running;
212
213    // kick things off by initiating the fetch of the next instruction
214    if (!fetchEvent.scheduled())
215        schedule(fetchEvent, clockEdge(Cycles(0)));
216
217    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218         == activeThreads.end()) {
219        activeThreads.push_back(thread_num);
220    }
221}
222
223
224void
225TimingSimpleCPU::suspendContext(ThreadID thread_num)
226{
227    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
228
229    assert(thread_num < numThreads);
230    activeThreads.remove(thread_num);
231
232    if (_status == Idle)
233        return;
234
235    assert(_status == BaseSimpleCPU::Running);
236
237    threadInfo[thread_num]->notIdleFraction = 0;
238
239    if (activeThreads.empty()) {
240        _status = Idle;
241
242        if (fetchEvent.scheduled()) {
243            deschedule(fetchEvent);
244        }
245    }
246}
247
248bool
249TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
250{
251    SimpleExecContext &t_info = *threadInfo[curThread];
252    SimpleThread* thread = t_info.thread;
253
254    RequestPtr req = pkt->req;
255
256    // We're about the issues a locked load, so tell the monitor
257    // to start caring about this address
258    if (pkt->isRead() && pkt->req->isLLSC()) {
259        TheISA::handleLockedRead(thread, pkt->req);
260    }
261    if (req->isMmappedIpr()) {
262        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
263        new IprEvent(pkt, this, clockEdge(delay));
264        _status = DcacheWaitResponse;
265        dcache_pkt = NULL;
266    } else if (!dcachePort.sendTimingReq(pkt)) {
267        _status = DcacheRetry;
268        dcache_pkt = pkt;
269    } else {
270        _status = DcacheWaitResponse;
271        // memory system takes ownership of packet
272        dcache_pkt = NULL;
273    }
274    return dcache_pkt == NULL;
275}
276
277void
278TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
279                          bool read)
280{
281    SimpleExecContext &t_info = *threadInfo[curThread];
282    SimpleThread* thread = t_info.thread;
283
284    PacketPtr pkt = buildPacket(req, read);
285    pkt->dataDynamic<uint8_t>(data);
286    if (req->getFlags().isSet(Request::NO_ACCESS)) {
287        assert(!dcache_pkt);
288        pkt->makeResponse();
289        completeDataAccess(pkt);
290    } else if (read) {
291        handleReadPacket(pkt);
292    } else {
293        bool do_access = true;  // flag to suppress cache access
294
295        if (req->isLLSC()) {
296            do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
297        } else if (req->isCondSwap()) {
298            assert(res);
299            req->setExtraData(*res);
300        }
301
302        if (do_access) {
303            dcache_pkt = pkt;
304            handleWritePacket();
305            threadSnoop(pkt, curThread);
306        } else {
307            _status = DcacheWaitResponse;
308            completeDataAccess(pkt);
309        }
310    }
311}
312
313void
314TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
315                               RequestPtr req, uint8_t *data, bool read)
316{
317    PacketPtr pkt1, pkt2;
318    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
319    if (req->getFlags().isSet(Request::NO_ACCESS)) {
320        assert(!dcache_pkt);
321        pkt1->makeResponse();
322        completeDataAccess(pkt1);
323    } else if (read) {
324        SplitFragmentSenderState * send_state =
325            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
326        if (handleReadPacket(pkt1)) {
327            send_state->clearFromParent();
328            send_state = dynamic_cast<SplitFragmentSenderState *>(
329                    pkt2->senderState);
330            if (handleReadPacket(pkt2)) {
331                send_state->clearFromParent();
332            }
333        }
334    } else {
335        dcache_pkt = pkt1;
336        SplitFragmentSenderState * send_state =
337            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
338        if (handleWritePacket()) {
339            send_state->clearFromParent();
340            dcache_pkt = pkt2;
341            send_state = dynamic_cast<SplitFragmentSenderState *>(
342                    pkt2->senderState);
343            if (handleWritePacket()) {
344                send_state->clearFromParent();
345            }
346        }
347    }
348}
349
350void
351TimingSimpleCPU::translationFault(const Fault &fault)
352{
353    // fault may be NoFault in cases where a fault is suppressed,
354    // for instance prefetches.
355    updateCycleCounts();
356
357    if (traceData) {
358        // Since there was a fault, we shouldn't trace this instruction.
359        delete traceData;
360        traceData = NULL;
361    }
362
363    postExecute();
364
365    advanceInst(fault);
366}
367
368PacketPtr
369TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
370{
371    return read ? Packet::createRead(req) : Packet::createWrite(req);
372}
373
374void
375TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
376        RequestPtr req1, RequestPtr req2, RequestPtr req,
377        uint8_t *data, bool read)
378{
379    pkt1 = pkt2 = NULL;
380
381    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
382
383    if (req->getFlags().isSet(Request::NO_ACCESS)) {
384        pkt1 = buildPacket(req, read);
385        return;
386    }
387
388    pkt1 = buildPacket(req1, read);
389    pkt2 = buildPacket(req2, read);
390
391    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
392
393    pkt->dataDynamic<uint8_t>(data);
394    pkt1->dataStatic<uint8_t>(data);
395    pkt2->dataStatic<uint8_t>(data + req1->getSize());
396
397    SplitMainSenderState * main_send_state = new SplitMainSenderState;
398    pkt->senderState = main_send_state;
399    main_send_state->fragments[0] = pkt1;
400    main_send_state->fragments[1] = pkt2;
401    main_send_state->outstanding = 2;
402    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
403    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
404}
405
406Fault
407TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
408                         unsigned size, unsigned flags)
409{
410    SimpleExecContext &t_info = *threadInfo[curThread];
411    SimpleThread* thread = t_info.thread;
412
413    Fault fault;
414    const int asid = 0;
415    const ThreadID tid = curThread;
416    const Addr pc = thread->instAddr();
417    unsigned block_size = cacheLineSize();
418    BaseTLB::Mode mode = BaseTLB::Read;
419
420    if (traceData)
421        traceData->setMem(addr, size, flags);
422
423    RequestPtr req  = new Request(asid, addr, size,
424                                  flags, dataMasterId(), pc,
425                                  thread->contextId(), tid);
426
427    req->taskId(taskId());
428
429    Addr split_addr = roundDown(addr + size - 1, block_size);
430    assert(split_addr <= addr || split_addr - addr < block_size);
431
432    _status = DTBWaitResponse;
433    if (split_addr > addr) {
434        RequestPtr req1, req2;
435        assert(!req->isLLSC() && !req->isSwap());
436        req->splitOnVaddr(split_addr, req1, req2);
437
438        WholeTranslationState *state =
439            new WholeTranslationState(req, req1, req2, new uint8_t[size],
440                                      NULL, mode);
441        DataTranslation<TimingSimpleCPU *> *trans1 =
442            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
443        DataTranslation<TimingSimpleCPU *> *trans2 =
444            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
445
446        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
447        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
448    } else {
449        WholeTranslationState *state =
450            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
451        DataTranslation<TimingSimpleCPU *> *translation
452            = new DataTranslation<TimingSimpleCPU *>(this, state);
453        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
454    }
455
456    return NoFault;
457}
458
459bool
460TimingSimpleCPU::handleWritePacket()
461{
462    SimpleExecContext &t_info = *threadInfo[curThread];
463    SimpleThread* thread = t_info.thread;
464
465    RequestPtr req = dcache_pkt->req;
466    if (req->isMmappedIpr()) {
467        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
468        new IprEvent(dcache_pkt, this, clockEdge(delay));
469        _status = DcacheWaitResponse;
470        dcache_pkt = NULL;
471    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
472        _status = DcacheRetry;
473    } else {
474        _status = DcacheWaitResponse;
475        // memory system takes ownership of packet
476        dcache_pkt = NULL;
477    }
478    return dcache_pkt == NULL;
479}
480
481Fault
482TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
483                          Addr addr, unsigned flags, uint64_t *res)
484{
485    SimpleExecContext &t_info = *threadInfo[curThread];
486    SimpleThread* thread = t_info.thread;
487
488    uint8_t *newData = new uint8_t[size];
489    const int asid = 0;
490    const ThreadID tid = curThread;
491    const Addr pc = thread->instAddr();
492    unsigned block_size = cacheLineSize();
493    BaseTLB::Mode mode = BaseTLB::Write;
494
495    if (data == NULL) {
496        assert(flags & Request::CACHE_BLOCK_ZERO);
497        // This must be a cache block cleaning request
498        memset(newData, 0, size);
499    } else {
500        memcpy(newData, data, size);
501    }
502
503    if (traceData)
504        traceData->setMem(addr, size, flags);
505
506    RequestPtr req = new Request(asid, addr, size,
507                                 flags, dataMasterId(), pc,
508                                 thread->contextId(), tid);
509
510    req->taskId(taskId());
511
512    Addr split_addr = roundDown(addr + size - 1, block_size);
513    assert(split_addr <= addr || split_addr - addr < block_size);
514
515    _status = DTBWaitResponse;
516    if (split_addr > addr) {
517        RequestPtr req1, req2;
518        assert(!req->isLLSC() && !req->isSwap());
519        req->splitOnVaddr(split_addr, req1, req2);
520
521        WholeTranslationState *state =
522            new WholeTranslationState(req, req1, req2, newData, res, mode);
523        DataTranslation<TimingSimpleCPU *> *trans1 =
524            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
525        DataTranslation<TimingSimpleCPU *> *trans2 =
526            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
527
528        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
529        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
530    } else {
531        WholeTranslationState *state =
532            new WholeTranslationState(req, newData, res, mode);
533        DataTranslation<TimingSimpleCPU *> *translation =
534            new DataTranslation<TimingSimpleCPU *>(this, state);
535        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
536    }
537
538    // Translation faults will be returned via finishTranslation()
539    return NoFault;
540}
541
542void
543TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
544{
545    for (ThreadID tid = 0; tid < numThreads; tid++) {
546        if (tid != sender) {
547            if(getCpuAddrMonitor(tid)->doMonitor(pkt)) {
548                wakeup();
549            }
550            TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
551                    dcachePort.cacheBlockMask);
552        }
553    }
554}
555
556void
557TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
558{
559    _status = BaseSimpleCPU::Running;
560
561    if (state->getFault() != NoFault) {
562        if (state->isPrefetch()) {
563            state->setNoFault();
564        }
565        delete [] state->data;
566        state->deleteReqs();
567        translationFault(state->getFault());
568    } else {
569        if (!state->isSplit) {
570            sendData(state->mainReq, state->data, state->res,
571                     state->mode == BaseTLB::Read);
572        } else {
573            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
574                          state->data, state->mode == BaseTLB::Read);
575        }
576    }
577
578    delete state;
579}
580
581
582void
583TimingSimpleCPU::fetch()
584{
585    // Change thread if multi-threaded
586    swapActiveThread();
587
588    SimpleExecContext &t_info = *threadInfo[curThread];
589    SimpleThread* thread = t_info.thread;
590
591    DPRINTF(SimpleCPU, "Fetch\n");
592
593    if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
594        checkForInterrupts();
595        checkPcEventQueue();
596    }
597
598    // We must have just got suspended by a PC event
599    if (_status == Idle)
600        return;
601
602    TheISA::PCState pcState = thread->pcState();
603    bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
604                       !curMacroStaticInst;
605
606    if (needToFetch) {
607        _status = BaseSimpleCPU::Running;
608        Request *ifetch_req = new Request();
609        ifetch_req->taskId(taskId());
610        ifetch_req->setThreadContext(thread->contextId(), curThread);
611        setupFetchRequest(ifetch_req);
612        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
613        thread->itb->translateTiming(ifetch_req, thread->getTC(),
614                &fetchTranslation, BaseTLB::Execute);
615    } else {
616        _status = IcacheWaitResponse;
617        completeIfetch(NULL);
618
619        updateCycleCounts();
620    }
621}
622
623
624void
625TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
626                           ThreadContext *tc)
627{
628    if (fault == NoFault) {
629        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
630                req->getVaddr(), req->getPaddr());
631        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
632        ifetch_pkt->dataStatic(&inst);
633        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
634
635        if (!icachePort.sendTimingReq(ifetch_pkt)) {
636            // Need to wait for retry
637            _status = IcacheRetry;
638        } else {
639            // Need to wait for cache to respond
640            _status = IcacheWaitResponse;
641            // ownership of packet transferred to memory system
642            ifetch_pkt = NULL;
643        }
644    } else {
645        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
646        delete req;
647        // fetch fault: advance directly to next instruction (fault handler)
648        _status = BaseSimpleCPU::Running;
649        advanceInst(fault);
650    }
651
652    updateCycleCounts();
653}
654
655
656void
657TimingSimpleCPU::advanceInst(const Fault &fault)
658{
659    SimpleExecContext &t_info = *threadInfo[curThread];
660
661    if (_status == Faulting)
662        return;
663
664    if (fault != NoFault) {
665        advancePC(fault);
666        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
667        reschedule(fetchEvent, clockEdge(), true);
668        _status = Faulting;
669        return;
670    }
671
672
673    if (!t_info.stayAtPC)
674        advancePC(fault);
675
676    if (tryCompleteDrain())
677            return;
678
679    if (_status == BaseSimpleCPU::Running) {
680        // kick off fetch of next instruction... callback from icache
681        // response will cause that instruction to be executed,
682        // keeping the CPU running.
683        fetch();
684    }
685}
686
687
688void
689TimingSimpleCPU::completeIfetch(PacketPtr pkt)
690{
691    SimpleExecContext& t_info = *threadInfo[curThread];
692
693    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
694            pkt->getAddr() : 0);
695
696    // received a response from the icache: execute the received
697    // instruction
698    assert(!pkt || !pkt->isError());
699    assert(_status == IcacheWaitResponse);
700
701    _status = BaseSimpleCPU::Running;
702
703    updateCycleCounts();
704
705    if (pkt)
706        pkt->req->setAccessLatency();
707
708
709    preExecute();
710    if (curStaticInst && curStaticInst->isMemRef()) {
711        // load or store: just send to dcache
712        Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
713
714        // If we're not running now the instruction will complete in a dcache
715        // response callback or the instruction faulted and has started an
716        // ifetch
717        if (_status == BaseSimpleCPU::Running) {
718            if (fault != NoFault && traceData) {
719                // If there was a fault, we shouldn't trace this instruction.
720                delete traceData;
721                traceData = NULL;
722            }
723
724            postExecute();
725            // @todo remove me after debugging with legion done
726            if (curStaticInst && (!curStaticInst->isMicroop() ||
727                        curStaticInst->isFirstMicroop()))
728                instCnt++;
729            advanceInst(fault);
730        }
731    } else if (curStaticInst) {
732        // non-memory instruction: execute completely now
733        Fault fault = curStaticInst->execute(&t_info, traceData);
734
735        // keep an instruction count
736        if (fault == NoFault)
737            countInst();
738        else if (traceData && !DTRACE(ExecFaulting)) {
739            delete traceData;
740            traceData = NULL;
741        }
742
743        postExecute();
744        // @todo remove me after debugging with legion done
745        if (curStaticInst && (!curStaticInst->isMicroop() ||
746                curStaticInst->isFirstMicroop()))
747            instCnt++;
748        advanceInst(fault);
749    } else {
750        advanceInst(NoFault);
751    }
752
753    if (pkt) {
754        delete pkt->req;
755        delete pkt;
756    }
757}
758
759void
760TimingSimpleCPU::IcachePort::ITickEvent::process()
761{
762    cpu->completeIfetch(pkt);
763}
764
765bool
766TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
767{
768    DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
769    // we should only ever see one response per cycle since we only
770    // issue a new request once this response is sunk
771    assert(!tickEvent.scheduled());
772    // delay processing of returned data until next CPU clock edge
773    tickEvent.schedule(pkt, cpu->clockEdge());
774
775    return true;
776}
777
778void
779TimingSimpleCPU::IcachePort::recvReqRetry()
780{
781    // we shouldn't get a retry unless we have a packet that we're
782    // waiting to transmit
783    assert(cpu->ifetch_pkt != NULL);
784    assert(cpu->_status == IcacheRetry);
785    PacketPtr tmp = cpu->ifetch_pkt;
786    if (sendTimingReq(tmp)) {
787        cpu->_status = IcacheWaitResponse;
788        cpu->ifetch_pkt = NULL;
789    }
790}
791
792void
793TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
794{
795    // received a response from the dcache: complete the load or store
796    // instruction
797    assert(!pkt->isError());
798    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
799           pkt->req->getFlags().isSet(Request::NO_ACCESS));
800
801    pkt->req->setAccessLatency();
802
803    updateCycleCounts();
804
805    if (pkt->senderState) {
806        SplitFragmentSenderState * send_state =
807            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
808        assert(send_state);
809        delete pkt->req;
810        delete pkt;
811        PacketPtr big_pkt = send_state->bigPkt;
812        delete send_state;
813
814        SplitMainSenderState * main_send_state =
815            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
816        assert(main_send_state);
817        // Record the fact that this packet is no longer outstanding.
818        assert(main_send_state->outstanding != 0);
819        main_send_state->outstanding--;
820
821        if (main_send_state->outstanding) {
822            return;
823        } else {
824            delete main_send_state;
825            big_pkt->senderState = NULL;
826            pkt = big_pkt;
827        }
828    }
829
830    _status = BaseSimpleCPU::Running;
831
832    Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
833                                             traceData);
834
835    // keep an instruction count
836    if (fault == NoFault)
837        countInst();
838    else if (traceData) {
839        // If there was a fault, we shouldn't trace this instruction.
840        delete traceData;
841        traceData = NULL;
842    }
843
844    delete pkt->req;
845    delete pkt;
846
847    postExecute();
848
849    advanceInst(fault);
850}
851
852void
853TimingSimpleCPU::updateCycleCounts()
854{
855    const Cycles delta(curCycle() - previousCycle);
856
857    numCycles += delta;
858    ppCycles->notify(delta);
859
860    previousCycle = curCycle();
861}
862
863void
864TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
865{
866    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
867        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
868            cpu->wakeup();
869        }
870    }
871
872    for (auto &t_info : cpu->threadInfo) {
873        TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
874    }
875}
876
877void
878TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
879{
880    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
881        if(cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
882            cpu->wakeup();
883        }
884    }
885}
886
887bool
888TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
889{
890    DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
891
892    // The timing CPU is not really ticked, instead it relies on the
893    // memory system (fetch and load/store) to set the pace.
894    if (!tickEvent.scheduled()) {
895        // Delay processing of returned data until next CPU clock edge
896        tickEvent.schedule(pkt, cpu->clockEdge());
897        return true;
898    } else {
899        // In the case of a split transaction and a cache that is
900        // faster than a CPU we could get two responses in the
901        // same tick, delay the second one
902        if (!retryRespEvent.scheduled())
903            cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
904        return false;
905    }
906}
907
908void
909TimingSimpleCPU::DcachePort::DTickEvent::process()
910{
911    cpu->completeDataAccess(pkt);
912}
913
914void
915TimingSimpleCPU::DcachePort::recvReqRetry()
916{
917    // we shouldn't get a retry unless we have a packet that we're
918    // waiting to transmit
919    assert(cpu->dcache_pkt != NULL);
920    assert(cpu->_status == DcacheRetry);
921    PacketPtr tmp = cpu->dcache_pkt;
922    if (tmp->senderState) {
923        // This is a packet from a split access.
924        SplitFragmentSenderState * send_state =
925            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
926        assert(send_state);
927        PacketPtr big_pkt = send_state->bigPkt;
928
929        SplitMainSenderState * main_send_state =
930            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
931        assert(main_send_state);
932
933        if (sendTimingReq(tmp)) {
934            // If we were able to send without retrying, record that fact
935            // and try sending the other fragment.
936            send_state->clearFromParent();
937            int other_index = main_send_state->getPendingFragment();
938            if (other_index > 0) {
939                tmp = main_send_state->fragments[other_index];
940                cpu->dcache_pkt = tmp;
941                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
942                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
943                    main_send_state->fragments[other_index] = NULL;
944                }
945            } else {
946                cpu->_status = DcacheWaitResponse;
947                // memory system takes ownership of packet
948                cpu->dcache_pkt = NULL;
949            }
950        }
951    } else if (sendTimingReq(tmp)) {
952        cpu->_status = DcacheWaitResponse;
953        // memory system takes ownership of packet
954        cpu->dcache_pkt = NULL;
955    }
956}
957
958TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
959    Tick t)
960    : pkt(_pkt), cpu(_cpu)
961{
962    cpu->schedule(this, t);
963}
964
965void
966TimingSimpleCPU::IprEvent::process()
967{
968    cpu->completeDataAccess(pkt);
969}
970
971const char *
972TimingSimpleCPU::IprEvent::description() const
973{
974    return "Timing Simple CPU Delay IPR event";
975}
976
977
978void
979TimingSimpleCPU::printAddr(Addr a)
980{
981    dcachePort.printAddr(a);
982}
983
984
985////////////////////////////////////////////////////////////////////////
986//
987//  TimingSimpleCPU Simulation Object
988//
989TimingSimpleCPU *
990TimingSimpleCPUParams::create()
991{
992    return new TimingSimpleCPU(this);
993}
994