timing.cc revision 10020:2f33cb012383
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    // Initialise the ThreadContext's memory proxies
70    tcBase()->initMemProxies(tcBase());
71
72    if (FullSystem && !params()->switched_out) {
73        for (int i = 0; i < threadContexts.size(); ++i) {
74            ThreadContext *tc = threadContexts[i];
75            // initialize CPU, including PC
76            TheISA::initCPU(tc, _cpuId);
77        }
78    }
79}
80
81void
82TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83{
84    pkt = _pkt;
85    cpu->schedule(this, t);
86}
87
88TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91      fetchEvent(this), drainManager(NULL)
92{
93    _status = Idle;
94
95    system->totalNumInsts = 0;
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103unsigned int
104TimingSimpleCPU::drain(DrainManager *drain_manager)
105{
106    assert(!drainManager);
107    if (switchedOut())
108        return 0;
109
110    if (_status == Idle ||
111        (_status == BaseSimpleCPU::Running && isDrained())) {
112        DPRINTF(Drain, "No need to drain.\n");
113        return 0;
114    } else {
115        drainManager = drain_manager;
116        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
117
118        // The fetch event can become descheduled if a drain didn't
119        // succeed on the first attempt. We need to reschedule it if
120        // the CPU is waiting for a microcode routine to complete.
121        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
122            schedule(fetchEvent, clockEdge());
123
124        return 1;
125    }
126}
127
128void
129TimingSimpleCPU::drainResume()
130{
131    assert(!fetchEvent.scheduled());
132    assert(!drainManager);
133    if (switchedOut())
134        return;
135
136    DPRINTF(SimpleCPU, "Resume\n");
137    verifyMemoryMode();
138
139    assert(!threadContexts.empty());
140    if (threadContexts.size() > 1)
141        fatal("The timing CPU only supports one thread.\n");
142
143    if (thread->status() == ThreadContext::Active) {
144        schedule(fetchEvent, nextCycle());
145        _status = BaseSimpleCPU::Running;
146        notIdleFraction = 1;
147    } else {
148        _status = BaseSimpleCPU::Idle;
149        notIdleFraction = 0;
150    }
151}
152
153bool
154TimingSimpleCPU::tryCompleteDrain()
155{
156    if (!drainManager)
157        return false;
158
159    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
160    if (!isDrained())
161        return false;
162
163    DPRINTF(Drain, "CPU done draining, processing drain event\n");
164    drainManager->signalDrainDone();
165    drainManager = NULL;
166
167    return true;
168}
169
170void
171TimingSimpleCPU::switchOut()
172{
173    BaseSimpleCPU::switchOut();
174
175    assert(!fetchEvent.scheduled());
176    assert(_status == BaseSimpleCPU::Running || _status == Idle);
177    assert(!stayAtPC);
178    assert(microPC() == 0);
179
180    numCycles += curCycle() - previousCycle;
181}
182
183
184void
185TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186{
187    BaseSimpleCPU::takeOverFrom(oldCPU);
188
189    previousCycle = curCycle();
190}
191
192void
193TimingSimpleCPU::verifyMemoryMode() const
194{
195    if (!system->isTimingMode()) {
196        fatal("The timing CPU requires the memory system to be in "
197              "'timing' mode.\n");
198    }
199}
200
201void
202TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
203{
204    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
205
206    assert(thread_num == 0);
207    assert(thread);
208
209    assert(_status == Idle);
210
211    notIdleFraction = 1;
212    _status = BaseSimpleCPU::Running;
213
214    // kick things off by initiating the fetch of the next instruction
215    schedule(fetchEvent, clockEdge(delay));
216}
217
218
219void
220TimingSimpleCPU::suspendContext(ThreadID thread_num)
221{
222    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
223
224    assert(thread_num == 0);
225    assert(thread);
226
227    if (_status == Idle)
228        return;
229
230    assert(_status == BaseSimpleCPU::Running);
231
232    // just change status to Idle... if status != Running,
233    // completeInst() will not initiate fetch of next instruction.
234
235    notIdleFraction = 0;
236    _status = Idle;
237}
238
239bool
240TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
241{
242    RequestPtr req = pkt->req;
243    if (req->isMmappedIpr()) {
244        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
245        new IprEvent(pkt, this, clockEdge(delay));
246        _status = DcacheWaitResponse;
247        dcache_pkt = NULL;
248    } else if (!dcachePort.sendTimingReq(pkt)) {
249        _status = DcacheRetry;
250        dcache_pkt = pkt;
251    } else {
252        _status = DcacheWaitResponse;
253        // memory system takes ownership of packet
254        dcache_pkt = NULL;
255    }
256    return dcache_pkt == NULL;
257}
258
259void
260TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
261                          bool read)
262{
263    PacketPtr pkt;
264    buildPacket(pkt, req, read);
265    pkt->dataDynamicArray<uint8_t>(data);
266    if (req->getFlags().isSet(Request::NO_ACCESS)) {
267        assert(!dcache_pkt);
268        pkt->makeResponse();
269        completeDataAccess(pkt);
270    } else if (read) {
271        handleReadPacket(pkt);
272    } else {
273        bool do_access = true;  // flag to suppress cache access
274
275        if (req->isLLSC()) {
276            do_access = TheISA::handleLockedWrite(thread, req);
277        } else if (req->isCondSwap()) {
278            assert(res);
279            req->setExtraData(*res);
280        }
281
282        if (do_access) {
283            dcache_pkt = pkt;
284            handleWritePacket();
285        } else {
286            _status = DcacheWaitResponse;
287            completeDataAccess(pkt);
288        }
289    }
290}
291
292void
293TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
294                               RequestPtr req, uint8_t *data, bool read)
295{
296    PacketPtr pkt1, pkt2;
297    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
298    if (req->getFlags().isSet(Request::NO_ACCESS)) {
299        assert(!dcache_pkt);
300        pkt1->makeResponse();
301        completeDataAccess(pkt1);
302    } else if (read) {
303        SplitFragmentSenderState * send_state =
304            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
305        if (handleReadPacket(pkt1)) {
306            send_state->clearFromParent();
307            send_state = dynamic_cast<SplitFragmentSenderState *>(
308                    pkt2->senderState);
309            if (handleReadPacket(pkt2)) {
310                send_state->clearFromParent();
311            }
312        }
313    } else {
314        dcache_pkt = pkt1;
315        SplitFragmentSenderState * send_state =
316            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317        if (handleWritePacket()) {
318            send_state->clearFromParent();
319            dcache_pkt = pkt2;
320            send_state = dynamic_cast<SplitFragmentSenderState *>(
321                    pkt2->senderState);
322            if (handleWritePacket()) {
323                send_state->clearFromParent();
324            }
325        }
326    }
327}
328
329void
330TimingSimpleCPU::translationFault(Fault fault)
331{
332    // fault may be NoFault in cases where a fault is suppressed,
333    // for instance prefetches.
334    numCycles += curCycle() - previousCycle;
335    previousCycle = curCycle();
336
337    if (traceData) {
338        // Since there was a fault, we shouldn't trace this instruction.
339        delete traceData;
340        traceData = NULL;
341    }
342
343    postExecute();
344
345    advanceInst(fault);
346}
347
348void
349TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
350{
351    MemCmd cmd;
352    if (read) {
353        cmd = MemCmd::ReadReq;
354        if (req->isLLSC())
355            cmd = MemCmd::LoadLockedReq;
356    } else {
357        cmd = MemCmd::WriteReq;
358        if (req->isLLSC()) {
359            cmd = MemCmd::StoreCondReq;
360        } else if (req->isSwap()) {
361            cmd = MemCmd::SwapReq;
362        }
363    }
364    pkt = new Packet(req, cmd);
365}
366
367void
368TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
369        RequestPtr req1, RequestPtr req2, RequestPtr req,
370        uint8_t *data, bool read)
371{
372    pkt1 = pkt2 = NULL;
373
374    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
375
376    if (req->getFlags().isSet(Request::NO_ACCESS)) {
377        buildPacket(pkt1, req, read);
378        return;
379    }
380
381    buildPacket(pkt1, req1, read);
382    buildPacket(pkt2, req2, read);
383
384    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
385    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
386
387    pkt->dataDynamicArray<uint8_t>(data);
388    pkt1->dataStatic<uint8_t>(data);
389    pkt2->dataStatic<uint8_t>(data + req1->getSize());
390
391    SplitMainSenderState * main_send_state = new SplitMainSenderState;
392    pkt->senderState = main_send_state;
393    main_send_state->fragments[0] = pkt1;
394    main_send_state->fragments[1] = pkt2;
395    main_send_state->outstanding = 2;
396    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
397    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
398}
399
400Fault
401TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
402                         unsigned size, unsigned flags)
403{
404    Fault fault;
405    const int asid = 0;
406    const ThreadID tid = 0;
407    const Addr pc = thread->instAddr();
408    unsigned block_size = cacheLineSize();
409    BaseTLB::Mode mode = BaseTLB::Read;
410
411    if (traceData) {
412        traceData->setAddr(addr);
413    }
414
415    RequestPtr req  = new Request(asid, addr, size,
416                                  flags, dataMasterId(), pc, _cpuId, tid);
417
418    Addr split_addr = roundDown(addr + size - 1, block_size);
419    assert(split_addr <= addr || split_addr - addr < block_size);
420
421    _status = DTBWaitResponse;
422    if (split_addr > addr) {
423        RequestPtr req1, req2;
424        assert(!req->isLLSC() && !req->isSwap());
425        req->splitOnVaddr(split_addr, req1, req2);
426
427        WholeTranslationState *state =
428            new WholeTranslationState(req, req1, req2, new uint8_t[size],
429                                      NULL, mode);
430        DataTranslation<TimingSimpleCPU *> *trans1 =
431            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
432        DataTranslation<TimingSimpleCPU *> *trans2 =
433            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
434
435        thread->dtb->translateTiming(req1, tc, trans1, mode);
436        thread->dtb->translateTiming(req2, tc, trans2, mode);
437    } else {
438        WholeTranslationState *state =
439            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
440        DataTranslation<TimingSimpleCPU *> *translation
441            = new DataTranslation<TimingSimpleCPU *>(this, state);
442        thread->dtb->translateTiming(req, tc, translation, mode);
443    }
444
445    return NoFault;
446}
447
448bool
449TimingSimpleCPU::handleWritePacket()
450{
451    RequestPtr req = dcache_pkt->req;
452    if (req->isMmappedIpr()) {
453        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
454        new IprEvent(dcache_pkt, this, clockEdge(delay));
455        _status = DcacheWaitResponse;
456        dcache_pkt = NULL;
457    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
458        _status = DcacheRetry;
459    } else {
460        _status = DcacheWaitResponse;
461        // memory system takes ownership of packet
462        dcache_pkt = NULL;
463    }
464    return dcache_pkt == NULL;
465}
466
467Fault
468TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
469                          Addr addr, unsigned flags, uint64_t *res)
470{
471    uint8_t *newData = new uint8_t[size];
472    memcpy(newData, data, size);
473
474    const int asid = 0;
475    const ThreadID tid = 0;
476    const Addr pc = thread->instAddr();
477    unsigned block_size = cacheLineSize();
478    BaseTLB::Mode mode = BaseTLB::Write;
479
480    if (traceData) {
481        traceData->setAddr(addr);
482    }
483
484    RequestPtr req = new Request(asid, addr, size,
485                                 flags, dataMasterId(), pc, _cpuId, tid);
486
487    Addr split_addr = roundDown(addr + size - 1, block_size);
488    assert(split_addr <= addr || split_addr - addr < block_size);
489
490    _status = DTBWaitResponse;
491    if (split_addr > addr) {
492        RequestPtr req1, req2;
493        assert(!req->isLLSC() && !req->isSwap());
494        req->splitOnVaddr(split_addr, req1, req2);
495
496        WholeTranslationState *state =
497            new WholeTranslationState(req, req1, req2, newData, res, mode);
498        DataTranslation<TimingSimpleCPU *> *trans1 =
499            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
500        DataTranslation<TimingSimpleCPU *> *trans2 =
501            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
502
503        thread->dtb->translateTiming(req1, tc, trans1, mode);
504        thread->dtb->translateTiming(req2, tc, trans2, mode);
505    } else {
506        WholeTranslationState *state =
507            new WholeTranslationState(req, newData, res, mode);
508        DataTranslation<TimingSimpleCPU *> *translation =
509            new DataTranslation<TimingSimpleCPU *>(this, state);
510        thread->dtb->translateTiming(req, tc, translation, mode);
511    }
512
513    // Translation faults will be returned via finishTranslation()
514    return NoFault;
515}
516
517
518void
519TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
520{
521    _status = BaseSimpleCPU::Running;
522
523    if (state->getFault() != NoFault) {
524        if (state->isPrefetch()) {
525            state->setNoFault();
526        }
527        delete [] state->data;
528        state->deleteReqs();
529        translationFault(state->getFault());
530    } else {
531        if (!state->isSplit) {
532            sendData(state->mainReq, state->data, state->res,
533                     state->mode == BaseTLB::Read);
534        } else {
535            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
536                          state->data, state->mode == BaseTLB::Read);
537        }
538    }
539
540    delete state;
541}
542
543
544void
545TimingSimpleCPU::fetch()
546{
547    DPRINTF(SimpleCPU, "Fetch\n");
548
549    if (!curStaticInst || !curStaticInst->isDelayedCommit())
550        checkForInterrupts();
551
552    checkPcEventQueue();
553
554    // We must have just got suspended by a PC event
555    if (_status == Idle)
556        return;
557
558    TheISA::PCState pcState = thread->pcState();
559    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
560
561    if (needToFetch) {
562        _status = BaseSimpleCPU::Running;
563        Request *ifetch_req = new Request();
564        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
565        setupFetchRequest(ifetch_req);
566        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
567        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
568                BaseTLB::Execute);
569    } else {
570        _status = IcacheWaitResponse;
571        completeIfetch(NULL);
572
573        numCycles += curCycle() - previousCycle;
574        previousCycle = curCycle();
575    }
576}
577
578
579void
580TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
581{
582    if (fault == NoFault) {
583        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
584                req->getVaddr(), req->getPaddr());
585        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
586        ifetch_pkt->dataStatic(&inst);
587        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
588
589        if (!icachePort.sendTimingReq(ifetch_pkt)) {
590            // Need to wait for retry
591            _status = IcacheRetry;
592        } else {
593            // Need to wait for cache to respond
594            _status = IcacheWaitResponse;
595            // ownership of packet transferred to memory system
596            ifetch_pkt = NULL;
597        }
598    } else {
599        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
600        delete req;
601        // fetch fault: advance directly to next instruction (fault handler)
602        _status = BaseSimpleCPU::Running;
603        advanceInst(fault);
604    }
605
606    numCycles += curCycle() - previousCycle;
607    previousCycle = curCycle();
608}
609
610
611void
612TimingSimpleCPU::advanceInst(Fault fault)
613{
614    if (_status == Faulting)
615        return;
616
617    if (fault != NoFault) {
618        advancePC(fault);
619        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
620        reschedule(fetchEvent, clockEdge(), true);
621        _status = Faulting;
622        return;
623    }
624
625
626    if (!stayAtPC)
627        advancePC(fault);
628
629    if (tryCompleteDrain())
630            return;
631
632    if (_status == BaseSimpleCPU::Running) {
633        // kick off fetch of next instruction... callback from icache
634        // response will cause that instruction to be executed,
635        // keeping the CPU running.
636        fetch();
637    }
638}
639
640
641void
642TimingSimpleCPU::completeIfetch(PacketPtr pkt)
643{
644    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
645            pkt->getAddr() : 0);
646
647    // received a response from the icache: execute the received
648    // instruction
649    assert(!pkt || !pkt->isError());
650    assert(_status == IcacheWaitResponse);
651
652    _status = BaseSimpleCPU::Running;
653
654    numCycles += curCycle() - previousCycle;
655    previousCycle = curCycle();
656
657    if (pkt)
658        pkt->req->setAccessLatency();
659
660
661    preExecute();
662    if (curStaticInst && curStaticInst->isMemRef()) {
663        // load or store: just send to dcache
664        Fault fault = curStaticInst->initiateAcc(this, traceData);
665
666        // If we're not running now the instruction will complete in a dcache
667        // response callback or the instruction faulted and has started an
668        // ifetch
669        if (_status == BaseSimpleCPU::Running) {
670            if (fault != NoFault && traceData) {
671                // If there was a fault, we shouldn't trace this instruction.
672                delete traceData;
673                traceData = NULL;
674            }
675
676            postExecute();
677            // @todo remove me after debugging with legion done
678            if (curStaticInst && (!curStaticInst->isMicroop() ||
679                        curStaticInst->isFirstMicroop()))
680                instCnt++;
681            advanceInst(fault);
682        }
683    } else if (curStaticInst) {
684        // non-memory instruction: execute completely now
685        Fault fault = curStaticInst->execute(this, traceData);
686
687        // keep an instruction count
688        if (fault == NoFault)
689            countInst();
690        else if (traceData && !DTRACE(ExecFaulting)) {
691            delete traceData;
692            traceData = NULL;
693        }
694
695        postExecute();
696        // @todo remove me after debugging with legion done
697        if (curStaticInst && (!curStaticInst->isMicroop() ||
698                    curStaticInst->isFirstMicroop()))
699            instCnt++;
700        advanceInst(fault);
701    } else {
702        advanceInst(NoFault);
703    }
704
705    if (pkt) {
706        delete pkt->req;
707        delete pkt;
708    }
709}
710
711void
712TimingSimpleCPU::IcachePort::ITickEvent::process()
713{
714    cpu->completeIfetch(pkt);
715}
716
717bool
718TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
719{
720    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
721    // delay processing of returned data until next CPU clock edge
722    Tick next_tick = cpu->clockEdge();
723
724    if (next_tick == curTick())
725        cpu->completeIfetch(pkt);
726    else
727        tickEvent.schedule(pkt, next_tick);
728
729    return true;
730}
731
732void
733TimingSimpleCPU::IcachePort::recvRetry()
734{
735    // we shouldn't get a retry unless we have a packet that we're
736    // waiting to transmit
737    assert(cpu->ifetch_pkt != NULL);
738    assert(cpu->_status == IcacheRetry);
739    PacketPtr tmp = cpu->ifetch_pkt;
740    if (sendTimingReq(tmp)) {
741        cpu->_status = IcacheWaitResponse;
742        cpu->ifetch_pkt = NULL;
743    }
744}
745
746void
747TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
748{
749    // received a response from the dcache: complete the load or store
750    // instruction
751    assert(!pkt->isError());
752    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
753           pkt->req->getFlags().isSet(Request::NO_ACCESS));
754
755    pkt->req->setAccessLatency();
756    numCycles += curCycle() - previousCycle;
757    previousCycle = curCycle();
758
759    if (pkt->senderState) {
760        SplitFragmentSenderState * send_state =
761            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
762        assert(send_state);
763        delete pkt->req;
764        delete pkt;
765        PacketPtr big_pkt = send_state->bigPkt;
766        delete send_state;
767
768        SplitMainSenderState * main_send_state =
769            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
770        assert(main_send_state);
771        // Record the fact that this packet is no longer outstanding.
772        assert(main_send_state->outstanding != 0);
773        main_send_state->outstanding--;
774
775        if (main_send_state->outstanding) {
776            return;
777        } else {
778            delete main_send_state;
779            big_pkt->senderState = NULL;
780            pkt = big_pkt;
781        }
782    }
783
784    _status = BaseSimpleCPU::Running;
785
786    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
787
788    // keep an instruction count
789    if (fault == NoFault)
790        countInst();
791    else if (traceData) {
792        // If there was a fault, we shouldn't trace this instruction.
793        delete traceData;
794        traceData = NULL;
795    }
796
797    // the locked flag may be cleared on the response packet, so check
798    // pkt->req and not pkt to see if it was a load-locked
799    if (pkt->isRead() && pkt->req->isLLSC()) {
800        TheISA::handleLockedRead(thread, pkt->req);
801    }
802
803    delete pkt->req;
804    delete pkt;
805
806    postExecute();
807
808    advanceInst(fault);
809}
810
811bool
812TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
813{
814    // delay processing of returned data until next CPU clock edge
815    Tick next_tick = cpu->clockEdge();
816
817    if (next_tick == curTick()) {
818        cpu->completeDataAccess(pkt);
819    } else {
820        if (!tickEvent.scheduled()) {
821            tickEvent.schedule(pkt, next_tick);
822        } else {
823            // In the case of a split transaction and a cache that is
824            // faster than a CPU we could get two responses before
825            // next_tick expires
826            if (!retryEvent.scheduled())
827                cpu->schedule(retryEvent, next_tick);
828            return false;
829        }
830    }
831
832    return true;
833}
834
835void
836TimingSimpleCPU::DcachePort::DTickEvent::process()
837{
838    cpu->completeDataAccess(pkt);
839}
840
841void
842TimingSimpleCPU::DcachePort::recvRetry()
843{
844    // we shouldn't get a retry unless we have a packet that we're
845    // waiting to transmit
846    assert(cpu->dcache_pkt != NULL);
847    assert(cpu->_status == DcacheRetry);
848    PacketPtr tmp = cpu->dcache_pkt;
849    if (tmp->senderState) {
850        // This is a packet from a split access.
851        SplitFragmentSenderState * send_state =
852            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
853        assert(send_state);
854        PacketPtr big_pkt = send_state->bigPkt;
855
856        SplitMainSenderState * main_send_state =
857            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
858        assert(main_send_state);
859
860        if (sendTimingReq(tmp)) {
861            // If we were able to send without retrying, record that fact
862            // and try sending the other fragment.
863            send_state->clearFromParent();
864            int other_index = main_send_state->getPendingFragment();
865            if (other_index > 0) {
866                tmp = main_send_state->fragments[other_index];
867                cpu->dcache_pkt = tmp;
868                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
869                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
870                    main_send_state->fragments[other_index] = NULL;
871                }
872            } else {
873                cpu->_status = DcacheWaitResponse;
874                // memory system takes ownership of packet
875                cpu->dcache_pkt = NULL;
876            }
877        }
878    } else if (sendTimingReq(tmp)) {
879        cpu->_status = DcacheWaitResponse;
880        // memory system takes ownership of packet
881        cpu->dcache_pkt = NULL;
882    }
883}
884
885TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
886    Tick t)
887    : pkt(_pkt), cpu(_cpu)
888{
889    cpu->schedule(this, t);
890}
891
892void
893TimingSimpleCPU::IprEvent::process()
894{
895    cpu->completeDataAccess(pkt);
896}
897
898const char *
899TimingSimpleCPU::IprEvent::description() const
900{
901    return "Timing Simple CPU Delay IPR event";
902}
903
904
905void
906TimingSimpleCPU::printAddr(Addr a)
907{
908    dcachePort.printAddr(a);
909}
910
911
912////////////////////////////////////////////////////////////////////////
913//
914//  TimingSimpleCPU Simulation Object
915//
916TimingSimpleCPU *
917TimingSimpleCPUParams::create()
918{
919    numThreads = 1;
920    if (!FullSystem && workload.size() != 1)
921        panic("only one workload allowed");
922    return new TimingSimpleCPU(this);
923}
924