timing.cc revision 11608
1/*
2 * Copyright 2014 Google, Inc.
3 * Copyright (c) 2010-2013,2015 ARM Limited
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/locked_mem.hh"
45#include "arch/mmapped_ipr.hh"
46#include "arch/utility.hh"
47#include "base/bigint.hh"
48#include "config/the_isa.hh"
49#include "cpu/simple/timing.hh"
50#include "cpu/exetrace.hh"
51#include "debug/Config.hh"
52#include "debug/Drain.hh"
53#include "debug/ExecFaulting.hh"
54#include "debug/SimpleCPU.hh"
55#include "mem/packet.hh"
56#include "mem/packet_access.hh"
57#include "params/TimingSimpleCPU.hh"
58#include "sim/faults.hh"
59#include "sim/full_system.hh"
60#include "sim/system.hh"
61
62#include "debug/Mwait.hh"
63
64using namespace std;
65using namespace TheISA;
66
67void
68TimingSimpleCPU::init()
69{
70    BaseSimpleCPU::init();
71}
72
73void
74TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
75{
76    pkt = _pkt;
77    cpu->schedule(this, t);
78}
79
80TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
81    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
82      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
83      fetchEvent(this)
84{
85    _status = Idle;
86}
87
88
89
90TimingSimpleCPU::~TimingSimpleCPU()
91{
92}
93
94DrainState
95TimingSimpleCPU::drain()
96{
97    if (switchedOut())
98        return DrainState::Drained;
99
100    if (_status == Idle ||
101        (_status == BaseSimpleCPU::Running && isDrained())) {
102        DPRINTF(Drain, "No need to drain.\n");
103        activeThreads.clear();
104        return DrainState::Drained;
105    } else {
106        DPRINTF(Drain, "Requesting drain.\n");
107
108        // The fetch event can become descheduled if a drain didn't
109        // succeed on the first attempt. We need to reschedule it if
110        // the CPU is waiting for a microcode routine to complete.
111        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
112            schedule(fetchEvent, clockEdge());
113
114        return DrainState::Draining;
115    }
116}
117
118void
119TimingSimpleCPU::drainResume()
120{
121    assert(!fetchEvent.scheduled());
122    if (switchedOut())
123        return;
124
125    DPRINTF(SimpleCPU, "Resume\n");
126    verifyMemoryMode();
127
128    assert(!threadContexts.empty());
129
130    _status = BaseSimpleCPU::Idle;
131
132    for (ThreadID tid = 0; tid < numThreads; tid++) {
133        if (threadInfo[tid]->thread->status() == ThreadContext::Active) {
134            threadInfo[tid]->notIdleFraction = 1;
135
136            activeThreads.push_back(tid);
137
138            _status = BaseSimpleCPU::Running;
139
140            // Fetch if any threads active
141            if (!fetchEvent.scheduled()) {
142                schedule(fetchEvent, nextCycle());
143            }
144        } else {
145            threadInfo[tid]->notIdleFraction = 0;
146        }
147    }
148
149    system->totalNumInsts = 0;
150}
151
152bool
153TimingSimpleCPU::tryCompleteDrain()
154{
155    if (drainState() != DrainState::Draining)
156        return false;
157
158    DPRINTF(Drain, "tryCompleteDrain.\n");
159    if (!isDrained())
160        return false;
161
162    DPRINTF(Drain, "CPU done draining, processing drain event\n");
163    signalDrainDone();
164
165    return true;
166}
167
168void
169TimingSimpleCPU::switchOut()
170{
171    SimpleExecContext& t_info = *threadInfo[curThread];
172    M5_VAR_USED SimpleThread* thread = t_info.thread;
173
174    BaseSimpleCPU::switchOut();
175
176    assert(!fetchEvent.scheduled());
177    assert(_status == BaseSimpleCPU::Running || _status == Idle);
178    assert(!t_info.stayAtPC);
179    assert(thread->microPC() == 0);
180
181    updateCycleCounts();
182}
183
184
185void
186TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
187{
188    BaseSimpleCPU::takeOverFrom(oldCPU);
189
190    previousCycle = curCycle();
191}
192
193void
194TimingSimpleCPU::verifyMemoryMode() const
195{
196    if (!system->isTimingMode()) {
197        fatal("The timing CPU requires the memory system to be in "
198              "'timing' mode.\n");
199    }
200}
201
202void
203TimingSimpleCPU::activateContext(ThreadID thread_num)
204{
205    DPRINTF(SimpleCPU, "ActivateContext %d\n", thread_num);
206
207    assert(thread_num < numThreads);
208
209    threadInfo[thread_num]->notIdleFraction = 1;
210    if (_status == BaseSimpleCPU::Idle)
211        _status = BaseSimpleCPU::Running;
212
213    // kick things off by initiating the fetch of the next instruction
214    if (!fetchEvent.scheduled())
215        schedule(fetchEvent, clockEdge(Cycles(0)));
216
217    if (std::find(activeThreads.begin(), activeThreads.end(), thread_num)
218         == activeThreads.end()) {
219        activeThreads.push_back(thread_num);
220    }
221
222    BaseCPU::activateContext(thread_num);
223}
224
225
226void
227TimingSimpleCPU::suspendContext(ThreadID thread_num)
228{
229    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
230
231    assert(thread_num < numThreads);
232    activeThreads.remove(thread_num);
233
234    if (_status == Idle)
235        return;
236
237    assert(_status == BaseSimpleCPU::Running);
238
239    threadInfo[thread_num]->notIdleFraction = 0;
240
241    if (activeThreads.empty()) {
242        _status = Idle;
243
244        if (fetchEvent.scheduled()) {
245            deschedule(fetchEvent);
246        }
247    }
248
249    BaseCPU::suspendContext(thread_num);
250}
251
252bool
253TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
254{
255    SimpleExecContext &t_info = *threadInfo[curThread];
256    SimpleThread* thread = t_info.thread;
257
258    RequestPtr req = pkt->req;
259
260    // We're about the issues a locked load, so tell the monitor
261    // to start caring about this address
262    if (pkt->isRead() && pkt->req->isLLSC()) {
263        TheISA::handleLockedRead(thread, pkt->req);
264    }
265    if (req->isMmappedIpr()) {
266        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
267        new IprEvent(pkt, this, clockEdge(delay));
268        _status = DcacheWaitResponse;
269        dcache_pkt = NULL;
270    } else if (!dcachePort.sendTimingReq(pkt)) {
271        _status = DcacheRetry;
272        dcache_pkt = pkt;
273    } else {
274        _status = DcacheWaitResponse;
275        // memory system takes ownership of packet
276        dcache_pkt = NULL;
277    }
278    return dcache_pkt == NULL;
279}
280
281void
282TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
283                          bool read)
284{
285    SimpleExecContext &t_info = *threadInfo[curThread];
286    SimpleThread* thread = t_info.thread;
287
288    PacketPtr pkt = buildPacket(req, read);
289    pkt->dataDynamic<uint8_t>(data);
290    if (req->getFlags().isSet(Request::NO_ACCESS)) {
291        assert(!dcache_pkt);
292        pkt->makeResponse();
293        completeDataAccess(pkt);
294    } else if (read) {
295        handleReadPacket(pkt);
296    } else {
297        bool do_access = true;  // flag to suppress cache access
298
299        if (req->isLLSC()) {
300            do_access = TheISA::handleLockedWrite(thread, req, dcachePort.cacheBlockMask);
301        } else if (req->isCondSwap()) {
302            assert(res);
303            req->setExtraData(*res);
304        }
305
306        if (do_access) {
307            dcache_pkt = pkt;
308            handleWritePacket();
309            threadSnoop(pkt, curThread);
310        } else {
311            _status = DcacheWaitResponse;
312            completeDataAccess(pkt);
313        }
314    }
315}
316
317void
318TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
319                               RequestPtr req, uint8_t *data, bool read)
320{
321    PacketPtr pkt1, pkt2;
322    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
323    if (req->getFlags().isSet(Request::NO_ACCESS)) {
324        assert(!dcache_pkt);
325        pkt1->makeResponse();
326        completeDataAccess(pkt1);
327    } else if (read) {
328        SplitFragmentSenderState * send_state =
329            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
330        if (handleReadPacket(pkt1)) {
331            send_state->clearFromParent();
332            send_state = dynamic_cast<SplitFragmentSenderState *>(
333                    pkt2->senderState);
334            if (handleReadPacket(pkt2)) {
335                send_state->clearFromParent();
336            }
337        }
338    } else {
339        dcache_pkt = pkt1;
340        SplitFragmentSenderState * send_state =
341            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
342        if (handleWritePacket()) {
343            send_state->clearFromParent();
344            dcache_pkt = pkt2;
345            send_state = dynamic_cast<SplitFragmentSenderState *>(
346                    pkt2->senderState);
347            if (handleWritePacket()) {
348                send_state->clearFromParent();
349            }
350        }
351    }
352}
353
354void
355TimingSimpleCPU::translationFault(const Fault &fault)
356{
357    // fault may be NoFault in cases where a fault is suppressed,
358    // for instance prefetches.
359    updateCycleCounts();
360
361    if (traceData) {
362        // Since there was a fault, we shouldn't trace this instruction.
363        delete traceData;
364        traceData = NULL;
365    }
366
367    postExecute();
368
369    advanceInst(fault);
370}
371
372PacketPtr
373TimingSimpleCPU::buildPacket(RequestPtr req, bool read)
374{
375    return read ? Packet::createRead(req) : Packet::createWrite(req);
376}
377
378void
379TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
380        RequestPtr req1, RequestPtr req2, RequestPtr req,
381        uint8_t *data, bool read)
382{
383    pkt1 = pkt2 = NULL;
384
385    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
386
387    if (req->getFlags().isSet(Request::NO_ACCESS)) {
388        pkt1 = buildPacket(req, read);
389        return;
390    }
391
392    pkt1 = buildPacket(req1, read);
393    pkt2 = buildPacket(req2, read);
394
395    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
396
397    pkt->dataDynamic<uint8_t>(data);
398    pkt1->dataStatic<uint8_t>(data);
399    pkt2->dataStatic<uint8_t>(data + req1->getSize());
400
401    SplitMainSenderState * main_send_state = new SplitMainSenderState;
402    pkt->senderState = main_send_state;
403    main_send_state->fragments[0] = pkt1;
404    main_send_state->fragments[1] = pkt2;
405    main_send_state->outstanding = 2;
406    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
407    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
408}
409
410Fault
411TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
412                         unsigned size, Request::Flags flags)
413{
414    panic("readMem() is for atomic accesses, and should "
415          "never be called on TimingSimpleCPU.\n");
416}
417
418Fault
419TimingSimpleCPU::initiateMemRead(Addr addr, unsigned size,
420                                 Request::Flags flags)
421{
422    SimpleExecContext &t_info = *threadInfo[curThread];
423    SimpleThread* thread = t_info.thread;
424
425    Fault fault;
426    const int asid = 0;
427    const Addr pc = thread->instAddr();
428    unsigned block_size = cacheLineSize();
429    BaseTLB::Mode mode = BaseTLB::Read;
430
431    if (traceData)
432        traceData->setMem(addr, size, flags);
433
434    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
435                                 thread->contextId());
436
437    req->taskId(taskId());
438
439    Addr split_addr = roundDown(addr + size - 1, block_size);
440    assert(split_addr <= addr || split_addr - addr < block_size);
441
442    _status = DTBWaitResponse;
443    if (split_addr > addr) {
444        RequestPtr req1, req2;
445        assert(!req->isLLSC() && !req->isSwap());
446        req->splitOnVaddr(split_addr, req1, req2);
447
448        WholeTranslationState *state =
449            new WholeTranslationState(req, req1, req2, new uint8_t[size],
450                                      NULL, mode);
451        DataTranslation<TimingSimpleCPU *> *trans1 =
452            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
453        DataTranslation<TimingSimpleCPU *> *trans2 =
454            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
455
456        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
457        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
458    } else {
459        WholeTranslationState *state =
460            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
461        DataTranslation<TimingSimpleCPU *> *translation
462            = new DataTranslation<TimingSimpleCPU *>(this, state);
463        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
464    }
465
466    return NoFault;
467}
468
469bool
470TimingSimpleCPU::handleWritePacket()
471{
472    SimpleExecContext &t_info = *threadInfo[curThread];
473    SimpleThread* thread = t_info.thread;
474
475    RequestPtr req = dcache_pkt->req;
476    if (req->isMmappedIpr()) {
477        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
478        new IprEvent(dcache_pkt, this, clockEdge(delay));
479        _status = DcacheWaitResponse;
480        dcache_pkt = NULL;
481    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
482        _status = DcacheRetry;
483    } else {
484        _status = DcacheWaitResponse;
485        // memory system takes ownership of packet
486        dcache_pkt = NULL;
487    }
488    return dcache_pkt == NULL;
489}
490
491Fault
492TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
493                          Addr addr, Request::Flags flags, uint64_t *res)
494{
495    SimpleExecContext &t_info = *threadInfo[curThread];
496    SimpleThread* thread = t_info.thread;
497
498    uint8_t *newData = new uint8_t[size];
499    const int asid = 0;
500    const Addr pc = thread->instAddr();
501    unsigned block_size = cacheLineSize();
502    BaseTLB::Mode mode = BaseTLB::Write;
503
504    if (data == NULL) {
505        assert(flags & Request::CACHE_BLOCK_ZERO);
506        // This must be a cache block cleaning request
507        memset(newData, 0, size);
508    } else {
509        memcpy(newData, data, size);
510    }
511
512    if (traceData)
513        traceData->setMem(addr, size, flags);
514
515    RequestPtr req = new Request(asid, addr, size, flags, dataMasterId(), pc,
516                                 thread->contextId());
517
518    req->taskId(taskId());
519
520    Addr split_addr = roundDown(addr + size - 1, block_size);
521    assert(split_addr <= addr || split_addr - addr < block_size);
522
523    _status = DTBWaitResponse;
524    if (split_addr > addr) {
525        RequestPtr req1, req2;
526        assert(!req->isLLSC() && !req->isSwap());
527        req->splitOnVaddr(split_addr, req1, req2);
528
529        WholeTranslationState *state =
530            new WholeTranslationState(req, req1, req2, newData, res, mode);
531        DataTranslation<TimingSimpleCPU *> *trans1 =
532            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
533        DataTranslation<TimingSimpleCPU *> *trans2 =
534            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
535
536        thread->dtb->translateTiming(req1, thread->getTC(), trans1, mode);
537        thread->dtb->translateTiming(req2, thread->getTC(), trans2, mode);
538    } else {
539        WholeTranslationState *state =
540            new WholeTranslationState(req, newData, res, mode);
541        DataTranslation<TimingSimpleCPU *> *translation =
542            new DataTranslation<TimingSimpleCPU *>(this, state);
543        thread->dtb->translateTiming(req, thread->getTC(), translation, mode);
544    }
545
546    // Translation faults will be returned via finishTranslation()
547    return NoFault;
548}
549
550void
551TimingSimpleCPU::threadSnoop(PacketPtr pkt, ThreadID sender)
552{
553    for (ThreadID tid = 0; tid < numThreads; tid++) {
554        if (tid != sender) {
555            if (getCpuAddrMonitor(tid)->doMonitor(pkt)) {
556                wakeup(tid);
557            }
558            TheISA::handleLockedSnoop(threadInfo[tid]->thread, pkt,
559                    dcachePort.cacheBlockMask);
560        }
561    }
562}
563
564void
565TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
566{
567    _status = BaseSimpleCPU::Running;
568
569    if (state->getFault() != NoFault) {
570        if (state->isPrefetch()) {
571            state->setNoFault();
572        }
573        delete [] state->data;
574        state->deleteReqs();
575        translationFault(state->getFault());
576    } else {
577        if (!state->isSplit) {
578            sendData(state->mainReq, state->data, state->res,
579                     state->mode == BaseTLB::Read);
580        } else {
581            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
582                          state->data, state->mode == BaseTLB::Read);
583        }
584    }
585
586    delete state;
587}
588
589
590void
591TimingSimpleCPU::fetch()
592{
593    // Change thread if multi-threaded
594    swapActiveThread();
595
596    SimpleExecContext &t_info = *threadInfo[curThread];
597    SimpleThread* thread = t_info.thread;
598
599    DPRINTF(SimpleCPU, "Fetch\n");
600
601    if (!curStaticInst || !curStaticInst->isDelayedCommit()) {
602        checkForInterrupts();
603        checkPcEventQueue();
604    }
605
606    // We must have just got suspended by a PC event
607    if (_status == Idle)
608        return;
609
610    TheISA::PCState pcState = thread->pcState();
611    bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
612                       !curMacroStaticInst;
613
614    if (needToFetch) {
615        _status = BaseSimpleCPU::Running;
616        Request *ifetch_req = new Request();
617        ifetch_req->taskId(taskId());
618        ifetch_req->setContext(thread->contextId());
619        setupFetchRequest(ifetch_req);
620        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
621        thread->itb->translateTiming(ifetch_req, thread->getTC(),
622                &fetchTranslation, BaseTLB::Execute);
623    } else {
624        _status = IcacheWaitResponse;
625        completeIfetch(NULL);
626
627        updateCycleCounts();
628    }
629}
630
631
632void
633TimingSimpleCPU::sendFetch(const Fault &fault, RequestPtr req,
634                           ThreadContext *tc)
635{
636    if (fault == NoFault) {
637        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
638                req->getVaddr(), req->getPaddr());
639        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
640        ifetch_pkt->dataStatic(&inst);
641        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
642
643        if (!icachePort.sendTimingReq(ifetch_pkt)) {
644            // Need to wait for retry
645            _status = IcacheRetry;
646        } else {
647            // Need to wait for cache to respond
648            _status = IcacheWaitResponse;
649            // ownership of packet transferred to memory system
650            ifetch_pkt = NULL;
651        }
652    } else {
653        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
654        delete req;
655        // fetch fault: advance directly to next instruction (fault handler)
656        _status = BaseSimpleCPU::Running;
657        advanceInst(fault);
658    }
659
660    updateCycleCounts();
661}
662
663
664void
665TimingSimpleCPU::advanceInst(const Fault &fault)
666{
667    SimpleExecContext &t_info = *threadInfo[curThread];
668
669    if (_status == Faulting)
670        return;
671
672    if (fault != NoFault) {
673        advancePC(fault);
674        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
675        reschedule(fetchEvent, clockEdge(), true);
676        _status = Faulting;
677        return;
678    }
679
680
681    if (!t_info.stayAtPC)
682        advancePC(fault);
683
684    if (tryCompleteDrain())
685            return;
686
687    if (_status == BaseSimpleCPU::Running) {
688        // kick off fetch of next instruction... callback from icache
689        // response will cause that instruction to be executed,
690        // keeping the CPU running.
691        fetch();
692    }
693}
694
695
696void
697TimingSimpleCPU::completeIfetch(PacketPtr pkt)
698{
699    SimpleExecContext& t_info = *threadInfo[curThread];
700
701    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
702            pkt->getAddr() : 0);
703
704    // received a response from the icache: execute the received
705    // instruction
706    assert(!pkt || !pkt->isError());
707    assert(_status == IcacheWaitResponse);
708
709    _status = BaseSimpleCPU::Running;
710
711    updateCycleCounts();
712
713    if (pkt)
714        pkt->req->setAccessLatency();
715
716
717    preExecute();
718    if (curStaticInst && curStaticInst->isMemRef()) {
719        // load or store: just send to dcache
720        Fault fault = curStaticInst->initiateAcc(&t_info, traceData);
721
722        // If we're not running now the instruction will complete in a dcache
723        // response callback or the instruction faulted and has started an
724        // ifetch
725        if (_status == BaseSimpleCPU::Running) {
726            if (fault != NoFault && traceData) {
727                // If there was a fault, we shouldn't trace this instruction.
728                delete traceData;
729                traceData = NULL;
730            }
731
732            postExecute();
733            // @todo remove me after debugging with legion done
734            if (curStaticInst && (!curStaticInst->isMicroop() ||
735                        curStaticInst->isFirstMicroop()))
736                instCnt++;
737            advanceInst(fault);
738        }
739    } else if (curStaticInst) {
740        // non-memory instruction: execute completely now
741        Fault fault = curStaticInst->execute(&t_info, traceData);
742
743        // keep an instruction count
744        if (fault == NoFault)
745            countInst();
746        else if (traceData && !DTRACE(ExecFaulting)) {
747            delete traceData;
748            traceData = NULL;
749        }
750
751        postExecute();
752        // @todo remove me after debugging with legion done
753        if (curStaticInst && (!curStaticInst->isMicroop() ||
754                curStaticInst->isFirstMicroop()))
755            instCnt++;
756        advanceInst(fault);
757    } else {
758        advanceInst(NoFault);
759    }
760
761    if (pkt) {
762        delete pkt->req;
763        delete pkt;
764    }
765}
766
767void
768TimingSimpleCPU::IcachePort::ITickEvent::process()
769{
770    cpu->completeIfetch(pkt);
771}
772
773bool
774TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
775{
776    DPRINTF(SimpleCPU, "Received fetch response %#x\n", pkt->getAddr());
777    // we should only ever see one response per cycle since we only
778    // issue a new request once this response is sunk
779    assert(!tickEvent.scheduled());
780    // delay processing of returned data until next CPU clock edge
781    tickEvent.schedule(pkt, cpu->clockEdge());
782
783    return true;
784}
785
786void
787TimingSimpleCPU::IcachePort::recvReqRetry()
788{
789    // we shouldn't get a retry unless we have a packet that we're
790    // waiting to transmit
791    assert(cpu->ifetch_pkt != NULL);
792    assert(cpu->_status == IcacheRetry);
793    PacketPtr tmp = cpu->ifetch_pkt;
794    if (sendTimingReq(tmp)) {
795        cpu->_status = IcacheWaitResponse;
796        cpu->ifetch_pkt = NULL;
797    }
798}
799
800void
801TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
802{
803    // received a response from the dcache: complete the load or store
804    // instruction
805    assert(!pkt->isError());
806    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
807           pkt->req->getFlags().isSet(Request::NO_ACCESS));
808
809    pkt->req->setAccessLatency();
810
811    updateCycleCounts();
812
813    if (pkt->senderState) {
814        SplitFragmentSenderState * send_state =
815            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
816        assert(send_state);
817        delete pkt->req;
818        delete pkt;
819        PacketPtr big_pkt = send_state->bigPkt;
820        delete send_state;
821
822        SplitMainSenderState * main_send_state =
823            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
824        assert(main_send_state);
825        // Record the fact that this packet is no longer outstanding.
826        assert(main_send_state->outstanding != 0);
827        main_send_state->outstanding--;
828
829        if (main_send_state->outstanding) {
830            return;
831        } else {
832            delete main_send_state;
833            big_pkt->senderState = NULL;
834            pkt = big_pkt;
835        }
836    }
837
838    _status = BaseSimpleCPU::Running;
839
840    Fault fault = curStaticInst->completeAcc(pkt, threadInfo[curThread],
841                                             traceData);
842
843    // keep an instruction count
844    if (fault == NoFault)
845        countInst();
846    else if (traceData) {
847        // If there was a fault, we shouldn't trace this instruction.
848        delete traceData;
849        traceData = NULL;
850    }
851
852    delete pkt->req;
853    delete pkt;
854
855    postExecute();
856
857    advanceInst(fault);
858}
859
860void
861TimingSimpleCPU::updateCycleCounts()
862{
863    const Cycles delta(curCycle() - previousCycle);
864
865    numCycles += delta;
866    ppCycles->notify(delta);
867
868    previousCycle = curCycle();
869}
870
871void
872TimingSimpleCPU::DcachePort::recvTimingSnoopReq(PacketPtr pkt)
873{
874    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
875        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
876            cpu->wakeup(tid);
877        }
878    }
879
880    // Making it uniform across all CPUs:
881    // The CPUs need to be woken up only on an invalidation packet (when using caches)
882    // or on an incoming write packet (when not using caches)
883    // It is not necessary to wake up the processor on all incoming packets
884    if (pkt->isInvalidate() || pkt->isWrite()) {
885        for (auto &t_info : cpu->threadInfo) {
886            TheISA::handleLockedSnoop(t_info->thread, pkt, cacheBlockMask);
887        }
888    }
889}
890
891void
892TimingSimpleCPU::DcachePort::recvFunctionalSnoop(PacketPtr pkt)
893{
894    for (ThreadID tid = 0; tid < cpu->numThreads; tid++) {
895        if (cpu->getCpuAddrMonitor(tid)->doMonitor(pkt)) {
896            cpu->wakeup(tid);
897        }
898    }
899}
900
901bool
902TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
903{
904    DPRINTF(SimpleCPU, "Received load/store response %#x\n", pkt->getAddr());
905
906    // The timing CPU is not really ticked, instead it relies on the
907    // memory system (fetch and load/store) to set the pace.
908    if (!tickEvent.scheduled()) {
909        // Delay processing of returned data until next CPU clock edge
910        tickEvent.schedule(pkt, cpu->clockEdge());
911        return true;
912    } else {
913        // In the case of a split transaction and a cache that is
914        // faster than a CPU we could get two responses in the
915        // same tick, delay the second one
916        if (!retryRespEvent.scheduled())
917            cpu->schedule(retryRespEvent, cpu->clockEdge(Cycles(1)));
918        return false;
919    }
920}
921
922void
923TimingSimpleCPU::DcachePort::DTickEvent::process()
924{
925    cpu->completeDataAccess(pkt);
926}
927
928void
929TimingSimpleCPU::DcachePort::recvReqRetry()
930{
931    // we shouldn't get a retry unless we have a packet that we're
932    // waiting to transmit
933    assert(cpu->dcache_pkt != NULL);
934    assert(cpu->_status == DcacheRetry);
935    PacketPtr tmp = cpu->dcache_pkt;
936    if (tmp->senderState) {
937        // This is a packet from a split access.
938        SplitFragmentSenderState * send_state =
939            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
940        assert(send_state);
941        PacketPtr big_pkt = send_state->bigPkt;
942
943        SplitMainSenderState * main_send_state =
944            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
945        assert(main_send_state);
946
947        if (sendTimingReq(tmp)) {
948            // If we were able to send without retrying, record that fact
949            // and try sending the other fragment.
950            send_state->clearFromParent();
951            int other_index = main_send_state->getPendingFragment();
952            if (other_index > 0) {
953                tmp = main_send_state->fragments[other_index];
954                cpu->dcache_pkt = tmp;
955                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
956                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
957                    main_send_state->fragments[other_index] = NULL;
958                }
959            } else {
960                cpu->_status = DcacheWaitResponse;
961                // memory system takes ownership of packet
962                cpu->dcache_pkt = NULL;
963            }
964        }
965    } else if (sendTimingReq(tmp)) {
966        cpu->_status = DcacheWaitResponse;
967        // memory system takes ownership of packet
968        cpu->dcache_pkt = NULL;
969    }
970}
971
972TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
973    Tick t)
974    : pkt(_pkt), cpu(_cpu)
975{
976    cpu->schedule(this, t);
977}
978
979void
980TimingSimpleCPU::IprEvent::process()
981{
982    cpu->completeDataAccess(pkt);
983}
984
985const char *
986TimingSimpleCPU::IprEvent::description() const
987{
988    return "Timing Simple CPU Delay IPR event";
989}
990
991
992void
993TimingSimpleCPU::printAddr(Addr a)
994{
995    dcachePort.printAddr(a);
996}
997
998
999////////////////////////////////////////////////////////////////////////
1000//
1001//  TimingSimpleCPU Simulation Object
1002//
1003TimingSimpleCPU *
1004TimingSimpleCPUParams::create()
1005{
1006    return new TimingSimpleCPU(this);
1007}
1008