timing.cc revision 10024
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/timing.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Config.hh"
51#include "debug/Drain.hh"
52#include "debug/ExecFaulting.hh"
53#include "debug/SimpleCPU.hh"
54#include "mem/packet.hh"
55#include "mem/packet_access.hh"
56#include "params/TimingSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/full_system.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64void
65TimingSimpleCPU::init()
66{
67    BaseCPU::init();
68
69    // Initialise the ThreadContext's memory proxies
70    tcBase()->initMemProxies(tcBase());
71
72    if (FullSystem && !params()->switched_out) {
73        for (int i = 0; i < threadContexts.size(); ++i) {
74            ThreadContext *tc = threadContexts[i];
75            // initialize CPU, including PC
76            TheISA::initCPU(tc, _cpuId);
77        }
78    }
79}
80
81void
82TimingSimpleCPU::TimingCPUPort::TickEvent::schedule(PacketPtr _pkt, Tick t)
83{
84    pkt = _pkt;
85    cpu->schedule(this, t);
86}
87
88TimingSimpleCPU::TimingSimpleCPU(TimingSimpleCPUParams *p)
89    : BaseSimpleCPU(p), fetchTranslation(this), icachePort(this),
90      dcachePort(this), ifetch_pkt(NULL), dcache_pkt(NULL), previousCycle(0),
91      fetchEvent(this), drainManager(NULL)
92{
93    _status = Idle;
94
95    system->totalNumInsts = 0;
96}
97
98
99TimingSimpleCPU::~TimingSimpleCPU()
100{
101}
102
103unsigned int
104TimingSimpleCPU::drain(DrainManager *drain_manager)
105{
106    assert(!drainManager);
107    if (switchedOut())
108        return 0;
109
110    if (_status == Idle ||
111        (_status == BaseSimpleCPU::Running && isDrained())) {
112        DPRINTF(Drain, "No need to drain.\n");
113        return 0;
114    } else {
115        drainManager = drain_manager;
116        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
117
118        // The fetch event can become descheduled if a drain didn't
119        // succeed on the first attempt. We need to reschedule it if
120        // the CPU is waiting for a microcode routine to complete.
121        if (_status == BaseSimpleCPU::Running && !fetchEvent.scheduled())
122            schedule(fetchEvent, clockEdge());
123
124        return 1;
125    }
126}
127
128void
129TimingSimpleCPU::drainResume()
130{
131    assert(!fetchEvent.scheduled());
132    assert(!drainManager);
133    if (switchedOut())
134        return;
135
136    DPRINTF(SimpleCPU, "Resume\n");
137    verifyMemoryMode();
138
139    assert(!threadContexts.empty());
140    if (threadContexts.size() > 1)
141        fatal("The timing CPU only supports one thread.\n");
142
143    if (thread->status() == ThreadContext::Active) {
144        schedule(fetchEvent, nextCycle());
145        _status = BaseSimpleCPU::Running;
146        notIdleFraction = 1;
147    } else {
148        _status = BaseSimpleCPU::Idle;
149        notIdleFraction = 0;
150    }
151}
152
153bool
154TimingSimpleCPU::tryCompleteDrain()
155{
156    if (!drainManager)
157        return false;
158
159    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
160    if (!isDrained())
161        return false;
162
163    DPRINTF(Drain, "CPU done draining, processing drain event\n");
164    drainManager->signalDrainDone();
165    drainManager = NULL;
166
167    return true;
168}
169
170void
171TimingSimpleCPU::switchOut()
172{
173    BaseSimpleCPU::switchOut();
174
175    assert(!fetchEvent.scheduled());
176    assert(_status == BaseSimpleCPU::Running || _status == Idle);
177    assert(!stayAtPC);
178    assert(microPC() == 0);
179
180    numCycles += curCycle() - previousCycle;
181}
182
183
184void
185TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
186{
187    BaseSimpleCPU::takeOverFrom(oldCPU);
188
189    previousCycle = curCycle();
190}
191
192void
193TimingSimpleCPU::verifyMemoryMode() const
194{
195    if (!system->isTimingMode()) {
196        fatal("The timing CPU requires the memory system to be in "
197              "'timing' mode.\n");
198    }
199}
200
201void
202TimingSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
203{
204    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
205
206    assert(thread_num == 0);
207    assert(thread);
208
209    assert(_status == Idle);
210
211    notIdleFraction = 1;
212    _status = BaseSimpleCPU::Running;
213
214    // kick things off by initiating the fetch of the next instruction
215    schedule(fetchEvent, clockEdge(delay));
216}
217
218
219void
220TimingSimpleCPU::suspendContext(ThreadID thread_num)
221{
222    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
223
224    assert(thread_num == 0);
225    assert(thread);
226
227    if (_status == Idle)
228        return;
229
230    assert(_status == BaseSimpleCPU::Running);
231
232    // just change status to Idle... if status != Running,
233    // completeInst() will not initiate fetch of next instruction.
234
235    notIdleFraction = 0;
236    _status = Idle;
237}
238
239bool
240TimingSimpleCPU::handleReadPacket(PacketPtr pkt)
241{
242    RequestPtr req = pkt->req;
243    if (req->isMmappedIpr()) {
244        Cycles delay = TheISA::handleIprRead(thread->getTC(), pkt);
245        new IprEvent(pkt, this, clockEdge(delay));
246        _status = DcacheWaitResponse;
247        dcache_pkt = NULL;
248    } else if (!dcachePort.sendTimingReq(pkt)) {
249        _status = DcacheRetry;
250        dcache_pkt = pkt;
251    } else {
252        _status = DcacheWaitResponse;
253        // memory system takes ownership of packet
254        dcache_pkt = NULL;
255    }
256    return dcache_pkt == NULL;
257}
258
259void
260TimingSimpleCPU::sendData(RequestPtr req, uint8_t *data, uint64_t *res,
261                          bool read)
262{
263    PacketPtr pkt;
264    buildPacket(pkt, req, read);
265    pkt->dataDynamicArray<uint8_t>(data);
266    if (req->getFlags().isSet(Request::NO_ACCESS)) {
267        assert(!dcache_pkt);
268        pkt->makeResponse();
269        completeDataAccess(pkt);
270    } else if (read) {
271        handleReadPacket(pkt);
272    } else {
273        bool do_access = true;  // flag to suppress cache access
274
275        if (req->isLLSC()) {
276            do_access = TheISA::handleLockedWrite(thread, req);
277        } else if (req->isCondSwap()) {
278            assert(res);
279            req->setExtraData(*res);
280        }
281
282        if (do_access) {
283            dcache_pkt = pkt;
284            handleWritePacket();
285        } else {
286            _status = DcacheWaitResponse;
287            completeDataAccess(pkt);
288        }
289    }
290}
291
292void
293TimingSimpleCPU::sendSplitData(RequestPtr req1, RequestPtr req2,
294                               RequestPtr req, uint8_t *data, bool read)
295{
296    PacketPtr pkt1, pkt2;
297    buildSplitPacket(pkt1, pkt2, req1, req2, req, data, read);
298    if (req->getFlags().isSet(Request::NO_ACCESS)) {
299        assert(!dcache_pkt);
300        pkt1->makeResponse();
301        completeDataAccess(pkt1);
302    } else if (read) {
303        SplitFragmentSenderState * send_state =
304            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
305        if (handleReadPacket(pkt1)) {
306            send_state->clearFromParent();
307            send_state = dynamic_cast<SplitFragmentSenderState *>(
308                    pkt2->senderState);
309            if (handleReadPacket(pkt2)) {
310                send_state->clearFromParent();
311            }
312        }
313    } else {
314        dcache_pkt = pkt1;
315        SplitFragmentSenderState * send_state =
316            dynamic_cast<SplitFragmentSenderState *>(pkt1->senderState);
317        if (handleWritePacket()) {
318            send_state->clearFromParent();
319            dcache_pkt = pkt2;
320            send_state = dynamic_cast<SplitFragmentSenderState *>(
321                    pkt2->senderState);
322            if (handleWritePacket()) {
323                send_state->clearFromParent();
324            }
325        }
326    }
327}
328
329void
330TimingSimpleCPU::translationFault(Fault fault)
331{
332    // fault may be NoFault in cases where a fault is suppressed,
333    // for instance prefetches.
334    numCycles += curCycle() - previousCycle;
335    previousCycle = curCycle();
336
337    if (traceData) {
338        // Since there was a fault, we shouldn't trace this instruction.
339        delete traceData;
340        traceData = NULL;
341    }
342
343    postExecute();
344
345    advanceInst(fault);
346}
347
348void
349TimingSimpleCPU::buildPacket(PacketPtr &pkt, RequestPtr req, bool read)
350{
351    MemCmd cmd;
352    if (read) {
353        cmd = MemCmd::ReadReq;
354        if (req->isLLSC())
355            cmd = MemCmd::LoadLockedReq;
356    } else {
357        cmd = MemCmd::WriteReq;
358        if (req->isLLSC()) {
359            cmd = MemCmd::StoreCondReq;
360        } else if (req->isSwap()) {
361            cmd = MemCmd::SwapReq;
362        }
363    }
364    pkt = new Packet(req, cmd);
365}
366
367void
368TimingSimpleCPU::buildSplitPacket(PacketPtr &pkt1, PacketPtr &pkt2,
369        RequestPtr req1, RequestPtr req2, RequestPtr req,
370        uint8_t *data, bool read)
371{
372    pkt1 = pkt2 = NULL;
373
374    assert(!req1->isMmappedIpr() && !req2->isMmappedIpr());
375
376    if (req->getFlags().isSet(Request::NO_ACCESS)) {
377        buildPacket(pkt1, req, read);
378        return;
379    }
380
381    buildPacket(pkt1, req1, read);
382    buildPacket(pkt2, req2, read);
383
384    req->setPhys(req1->getPaddr(), req->getSize(), req1->getFlags(), dataMasterId());
385    PacketPtr pkt = new Packet(req, pkt1->cmd.responseCommand());
386
387    pkt->dataDynamicArray<uint8_t>(data);
388    pkt1->dataStatic<uint8_t>(data);
389    pkt2->dataStatic<uint8_t>(data + req1->getSize());
390
391    SplitMainSenderState * main_send_state = new SplitMainSenderState;
392    pkt->senderState = main_send_state;
393    main_send_state->fragments[0] = pkt1;
394    main_send_state->fragments[1] = pkt2;
395    main_send_state->outstanding = 2;
396    pkt1->senderState = new SplitFragmentSenderState(pkt, 0);
397    pkt2->senderState = new SplitFragmentSenderState(pkt, 1);
398}
399
400Fault
401TimingSimpleCPU::readMem(Addr addr, uint8_t *data,
402                         unsigned size, unsigned flags)
403{
404    Fault fault;
405    const int asid = 0;
406    const ThreadID tid = 0;
407    const Addr pc = thread->instAddr();
408    unsigned block_size = cacheLineSize();
409    BaseTLB::Mode mode = BaseTLB::Read;
410
411    if (traceData) {
412        traceData->setAddr(addr);
413    }
414
415    RequestPtr req  = new Request(asid, addr, size,
416                                  flags, dataMasterId(), pc, _cpuId, tid);
417
418    req->taskId(taskId());
419
420    Addr split_addr = roundDown(addr + size - 1, block_size);
421    assert(split_addr <= addr || split_addr - addr < block_size);
422
423    _status = DTBWaitResponse;
424    if (split_addr > addr) {
425        RequestPtr req1, req2;
426        assert(!req->isLLSC() && !req->isSwap());
427        req->splitOnVaddr(split_addr, req1, req2);
428
429        WholeTranslationState *state =
430            new WholeTranslationState(req, req1, req2, new uint8_t[size],
431                                      NULL, mode);
432        DataTranslation<TimingSimpleCPU *> *trans1 =
433            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
434        DataTranslation<TimingSimpleCPU *> *trans2 =
435            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
436
437        thread->dtb->translateTiming(req1, tc, trans1, mode);
438        thread->dtb->translateTiming(req2, tc, trans2, mode);
439    } else {
440        WholeTranslationState *state =
441            new WholeTranslationState(req, new uint8_t[size], NULL, mode);
442        DataTranslation<TimingSimpleCPU *> *translation
443            = new DataTranslation<TimingSimpleCPU *>(this, state);
444        thread->dtb->translateTiming(req, tc, translation, mode);
445    }
446
447    return NoFault;
448}
449
450bool
451TimingSimpleCPU::handleWritePacket()
452{
453    RequestPtr req = dcache_pkt->req;
454    if (req->isMmappedIpr()) {
455        Cycles delay = TheISA::handleIprWrite(thread->getTC(), dcache_pkt);
456        new IprEvent(dcache_pkt, this, clockEdge(delay));
457        _status = DcacheWaitResponse;
458        dcache_pkt = NULL;
459    } else if (!dcachePort.sendTimingReq(dcache_pkt)) {
460        _status = DcacheRetry;
461    } else {
462        _status = DcacheWaitResponse;
463        // memory system takes ownership of packet
464        dcache_pkt = NULL;
465    }
466    return dcache_pkt == NULL;
467}
468
469Fault
470TimingSimpleCPU::writeMem(uint8_t *data, unsigned size,
471                          Addr addr, unsigned flags, uint64_t *res)
472{
473    uint8_t *newData = new uint8_t[size];
474    memcpy(newData, data, size);
475
476    const int asid = 0;
477    const ThreadID tid = 0;
478    const Addr pc = thread->instAddr();
479    unsigned block_size = cacheLineSize();
480    BaseTLB::Mode mode = BaseTLB::Write;
481
482    if (traceData) {
483        traceData->setAddr(addr);
484    }
485
486    RequestPtr req = new Request(asid, addr, size,
487                                 flags, dataMasterId(), pc, _cpuId, tid);
488
489    req->taskId(taskId());
490
491    Addr split_addr = roundDown(addr + size - 1, block_size);
492    assert(split_addr <= addr || split_addr - addr < block_size);
493
494    _status = DTBWaitResponse;
495    if (split_addr > addr) {
496        RequestPtr req1, req2;
497        assert(!req->isLLSC() && !req->isSwap());
498        req->splitOnVaddr(split_addr, req1, req2);
499
500        WholeTranslationState *state =
501            new WholeTranslationState(req, req1, req2, newData, res, mode);
502        DataTranslation<TimingSimpleCPU *> *trans1 =
503            new DataTranslation<TimingSimpleCPU *>(this, state, 0);
504        DataTranslation<TimingSimpleCPU *> *trans2 =
505            new DataTranslation<TimingSimpleCPU *>(this, state, 1);
506
507        thread->dtb->translateTiming(req1, tc, trans1, mode);
508        thread->dtb->translateTiming(req2, tc, trans2, mode);
509    } else {
510        WholeTranslationState *state =
511            new WholeTranslationState(req, newData, res, mode);
512        DataTranslation<TimingSimpleCPU *> *translation =
513            new DataTranslation<TimingSimpleCPU *>(this, state);
514        thread->dtb->translateTiming(req, tc, translation, mode);
515    }
516
517    // Translation faults will be returned via finishTranslation()
518    return NoFault;
519}
520
521
522void
523TimingSimpleCPU::finishTranslation(WholeTranslationState *state)
524{
525    _status = BaseSimpleCPU::Running;
526
527    if (state->getFault() != NoFault) {
528        if (state->isPrefetch()) {
529            state->setNoFault();
530        }
531        delete [] state->data;
532        state->deleteReqs();
533        translationFault(state->getFault());
534    } else {
535        if (!state->isSplit) {
536            sendData(state->mainReq, state->data, state->res,
537                     state->mode == BaseTLB::Read);
538        } else {
539            sendSplitData(state->sreqLow, state->sreqHigh, state->mainReq,
540                          state->data, state->mode == BaseTLB::Read);
541        }
542    }
543
544    delete state;
545}
546
547
548void
549TimingSimpleCPU::fetch()
550{
551    DPRINTF(SimpleCPU, "Fetch\n");
552
553    if (!curStaticInst || !curStaticInst->isDelayedCommit())
554        checkForInterrupts();
555
556    checkPcEventQueue();
557
558    // We must have just got suspended by a PC event
559    if (_status == Idle)
560        return;
561
562    TheISA::PCState pcState = thread->pcState();
563    bool needToFetch = !isRomMicroPC(pcState.microPC()) && !curMacroStaticInst;
564
565    if (needToFetch) {
566        _status = BaseSimpleCPU::Running;
567        Request *ifetch_req = new Request();
568        ifetch_req->taskId(taskId());
569        ifetch_req->setThreadContext(_cpuId, /* thread ID */ 0);
570        setupFetchRequest(ifetch_req);
571        DPRINTF(SimpleCPU, "Translating address %#x\n", ifetch_req->getVaddr());
572        thread->itb->translateTiming(ifetch_req, tc, &fetchTranslation,
573                BaseTLB::Execute);
574    } else {
575        _status = IcacheWaitResponse;
576        completeIfetch(NULL);
577
578        numCycles += curCycle() - previousCycle;
579        previousCycle = curCycle();
580    }
581}
582
583
584void
585TimingSimpleCPU::sendFetch(Fault fault, RequestPtr req, ThreadContext *tc)
586{
587    if (fault == NoFault) {
588        DPRINTF(SimpleCPU, "Sending fetch for addr %#x(pa: %#x)\n",
589                req->getVaddr(), req->getPaddr());
590        ifetch_pkt = new Packet(req, MemCmd::ReadReq);
591        ifetch_pkt->dataStatic(&inst);
592        DPRINTF(SimpleCPU, " -- pkt addr: %#x\n", ifetch_pkt->getAddr());
593
594        if (!icachePort.sendTimingReq(ifetch_pkt)) {
595            // Need to wait for retry
596            _status = IcacheRetry;
597        } else {
598            // Need to wait for cache to respond
599            _status = IcacheWaitResponse;
600            // ownership of packet transferred to memory system
601            ifetch_pkt = NULL;
602        }
603    } else {
604        DPRINTF(SimpleCPU, "Translation of addr %#x faulted\n", req->getVaddr());
605        delete req;
606        // fetch fault: advance directly to next instruction (fault handler)
607        _status = BaseSimpleCPU::Running;
608        advanceInst(fault);
609    }
610
611    numCycles += curCycle() - previousCycle;
612    previousCycle = curCycle();
613}
614
615
616void
617TimingSimpleCPU::advanceInst(Fault fault)
618{
619    if (_status == Faulting)
620        return;
621
622    if (fault != NoFault) {
623        advancePC(fault);
624        DPRINTF(SimpleCPU, "Fault occured, scheduling fetch event\n");
625        reschedule(fetchEvent, clockEdge(), true);
626        _status = Faulting;
627        return;
628    }
629
630
631    if (!stayAtPC)
632        advancePC(fault);
633
634    if (tryCompleteDrain())
635            return;
636
637    if (_status == BaseSimpleCPU::Running) {
638        // kick off fetch of next instruction... callback from icache
639        // response will cause that instruction to be executed,
640        // keeping the CPU running.
641        fetch();
642    }
643}
644
645
646void
647TimingSimpleCPU::completeIfetch(PacketPtr pkt)
648{
649    DPRINTF(SimpleCPU, "Complete ICache Fetch for addr %#x\n", pkt ?
650            pkt->getAddr() : 0);
651
652    // received a response from the icache: execute the received
653    // instruction
654    assert(!pkt || !pkt->isError());
655    assert(_status == IcacheWaitResponse);
656
657    _status = BaseSimpleCPU::Running;
658
659    numCycles += curCycle() - previousCycle;
660    previousCycle = curCycle();
661
662    if (pkt)
663        pkt->req->setAccessLatency();
664
665
666    preExecute();
667    if (curStaticInst && curStaticInst->isMemRef()) {
668        // load or store: just send to dcache
669        Fault fault = curStaticInst->initiateAcc(this, traceData);
670
671        // If we're not running now the instruction will complete in a dcache
672        // response callback or the instruction faulted and has started an
673        // ifetch
674        if (_status == BaseSimpleCPU::Running) {
675            if (fault != NoFault && traceData) {
676                // If there was a fault, we shouldn't trace this instruction.
677                delete traceData;
678                traceData = NULL;
679            }
680
681            postExecute();
682            // @todo remove me after debugging with legion done
683            if (curStaticInst && (!curStaticInst->isMicroop() ||
684                        curStaticInst->isFirstMicroop()))
685                instCnt++;
686            advanceInst(fault);
687        }
688    } else if (curStaticInst) {
689        // non-memory instruction: execute completely now
690        Fault fault = curStaticInst->execute(this, traceData);
691
692        // keep an instruction count
693        if (fault == NoFault)
694            countInst();
695        else if (traceData && !DTRACE(ExecFaulting)) {
696            delete traceData;
697            traceData = NULL;
698        }
699
700        postExecute();
701        // @todo remove me after debugging with legion done
702        if (curStaticInst && (!curStaticInst->isMicroop() ||
703                    curStaticInst->isFirstMicroop()))
704            instCnt++;
705        advanceInst(fault);
706    } else {
707        advanceInst(NoFault);
708    }
709
710    if (pkt) {
711        delete pkt->req;
712        delete pkt;
713    }
714}
715
716void
717TimingSimpleCPU::IcachePort::ITickEvent::process()
718{
719    cpu->completeIfetch(pkt);
720}
721
722bool
723TimingSimpleCPU::IcachePort::recvTimingResp(PacketPtr pkt)
724{
725    DPRINTF(SimpleCPU, "Received timing response %#x\n", pkt->getAddr());
726    // delay processing of returned data until next CPU clock edge
727    Tick next_tick = cpu->clockEdge();
728
729    if (next_tick == curTick())
730        cpu->completeIfetch(pkt);
731    else
732        tickEvent.schedule(pkt, next_tick);
733
734    return true;
735}
736
737void
738TimingSimpleCPU::IcachePort::recvRetry()
739{
740    // we shouldn't get a retry unless we have a packet that we're
741    // waiting to transmit
742    assert(cpu->ifetch_pkt != NULL);
743    assert(cpu->_status == IcacheRetry);
744    PacketPtr tmp = cpu->ifetch_pkt;
745    if (sendTimingReq(tmp)) {
746        cpu->_status = IcacheWaitResponse;
747        cpu->ifetch_pkt = NULL;
748    }
749}
750
751void
752TimingSimpleCPU::completeDataAccess(PacketPtr pkt)
753{
754    // received a response from the dcache: complete the load or store
755    // instruction
756    assert(!pkt->isError());
757    assert(_status == DcacheWaitResponse || _status == DTBWaitResponse ||
758           pkt->req->getFlags().isSet(Request::NO_ACCESS));
759
760    pkt->req->setAccessLatency();
761    numCycles += curCycle() - previousCycle;
762    previousCycle = curCycle();
763
764    if (pkt->senderState) {
765        SplitFragmentSenderState * send_state =
766            dynamic_cast<SplitFragmentSenderState *>(pkt->senderState);
767        assert(send_state);
768        delete pkt->req;
769        delete pkt;
770        PacketPtr big_pkt = send_state->bigPkt;
771        delete send_state;
772
773        SplitMainSenderState * main_send_state =
774            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
775        assert(main_send_state);
776        // Record the fact that this packet is no longer outstanding.
777        assert(main_send_state->outstanding != 0);
778        main_send_state->outstanding--;
779
780        if (main_send_state->outstanding) {
781            return;
782        } else {
783            delete main_send_state;
784            big_pkt->senderState = NULL;
785            pkt = big_pkt;
786        }
787    }
788
789    _status = BaseSimpleCPU::Running;
790
791    Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
792
793    // keep an instruction count
794    if (fault == NoFault)
795        countInst();
796    else if (traceData) {
797        // If there was a fault, we shouldn't trace this instruction.
798        delete traceData;
799        traceData = NULL;
800    }
801
802    // the locked flag may be cleared on the response packet, so check
803    // pkt->req and not pkt to see if it was a load-locked
804    if (pkt->isRead() && pkt->req->isLLSC()) {
805        TheISA::handleLockedRead(thread, pkt->req);
806    }
807
808    delete pkt->req;
809    delete pkt;
810
811    postExecute();
812
813    advanceInst(fault);
814}
815
816bool
817TimingSimpleCPU::DcachePort::recvTimingResp(PacketPtr pkt)
818{
819    // delay processing of returned data until next CPU clock edge
820    Tick next_tick = cpu->clockEdge();
821
822    if (next_tick == curTick()) {
823        cpu->completeDataAccess(pkt);
824    } else {
825        if (!tickEvent.scheduled()) {
826            tickEvent.schedule(pkt, next_tick);
827        } else {
828            // In the case of a split transaction and a cache that is
829            // faster than a CPU we could get two responses before
830            // next_tick expires
831            if (!retryEvent.scheduled())
832                cpu->schedule(retryEvent, next_tick);
833            return false;
834        }
835    }
836
837    return true;
838}
839
840void
841TimingSimpleCPU::DcachePort::DTickEvent::process()
842{
843    cpu->completeDataAccess(pkt);
844}
845
846void
847TimingSimpleCPU::DcachePort::recvRetry()
848{
849    // we shouldn't get a retry unless we have a packet that we're
850    // waiting to transmit
851    assert(cpu->dcache_pkt != NULL);
852    assert(cpu->_status == DcacheRetry);
853    PacketPtr tmp = cpu->dcache_pkt;
854    if (tmp->senderState) {
855        // This is a packet from a split access.
856        SplitFragmentSenderState * send_state =
857            dynamic_cast<SplitFragmentSenderState *>(tmp->senderState);
858        assert(send_state);
859        PacketPtr big_pkt = send_state->bigPkt;
860
861        SplitMainSenderState * main_send_state =
862            dynamic_cast<SplitMainSenderState *>(big_pkt->senderState);
863        assert(main_send_state);
864
865        if (sendTimingReq(tmp)) {
866            // If we were able to send without retrying, record that fact
867            // and try sending the other fragment.
868            send_state->clearFromParent();
869            int other_index = main_send_state->getPendingFragment();
870            if (other_index > 0) {
871                tmp = main_send_state->fragments[other_index];
872                cpu->dcache_pkt = tmp;
873                if ((big_pkt->isRead() && cpu->handleReadPacket(tmp)) ||
874                        (big_pkt->isWrite() && cpu->handleWritePacket())) {
875                    main_send_state->fragments[other_index] = NULL;
876                }
877            } else {
878                cpu->_status = DcacheWaitResponse;
879                // memory system takes ownership of packet
880                cpu->dcache_pkt = NULL;
881            }
882        }
883    } else if (sendTimingReq(tmp)) {
884        cpu->_status = DcacheWaitResponse;
885        // memory system takes ownership of packet
886        cpu->dcache_pkt = NULL;
887    }
888}
889
890TimingSimpleCPU::IprEvent::IprEvent(Packet *_pkt, TimingSimpleCPU *_cpu,
891    Tick t)
892    : pkt(_pkt), cpu(_cpu)
893{
894    cpu->schedule(this, t);
895}
896
897void
898TimingSimpleCPU::IprEvent::process()
899{
900    cpu->completeDataAccess(pkt);
901}
902
903const char *
904TimingSimpleCPU::IprEvent::description() const
905{
906    return "Timing Simple CPU Delay IPR event";
907}
908
909
910void
911TimingSimpleCPU::printAddr(Addr a)
912{
913    dcachePort.printAddr(a);
914}
915
916
917////////////////////////////////////////////////////////////////////////
918//
919//  TimingSimpleCPU Simulation Object
920//
921TimingSimpleCPU *
922TimingSimpleCPUParams::create()
923{
924    numThreads = 1;
925    if (!FullSystem && workload.size() != 1)
926        panic("only one workload allowed");
927    return new TimingSimpleCPU(this);
928}
929