base.hh revision 9920:028e4da64b42
1/*
2 * Copyright (c) 2011-2012 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 *          Dave Greene
43 *          Nathan Binkert
44 */
45
46#ifndef __CPU_SIMPLE_BASE_HH__
47#define __CPU_SIMPLE_BASE_HH__
48
49#include "base/statistics.hh"
50#include "config/the_isa.hh"
51#include "cpu/base.hh"
52#include "cpu/checker/cpu.hh"
53#include "cpu/pc_event.hh"
54#include "cpu/simple_thread.hh"
55#include "cpu/static_inst.hh"
56#include "mem/packet.hh"
57#include "mem/port.hh"
58#include "mem/request.hh"
59#include "sim/eventq.hh"
60#include "sim/full_system.hh"
61#include "sim/system.hh"
62
63// forward declarations
64class Checkpoint;
65class Process;
66class Processor;
67class ThreadContext;
68
69namespace TheISA
70{
71    class DTB;
72    class ITB;
73}
74
75namespace Trace {
76    class InstRecord;
77}
78
79struct BaseSimpleCPUParams;
80
81
82class BaseSimpleCPU : public BaseCPU
83{
84  protected:
85    typedef TheISA::MiscReg MiscReg;
86    typedef TheISA::FloatReg FloatReg;
87    typedef TheISA::FloatRegBits FloatRegBits;
88    typedef TheISA::CCReg CCReg;
89
90  protected:
91    Trace::InstRecord *traceData;
92
93    inline void checkPcEventQueue() {
94        Addr oldpc, pc = thread->instAddr();
95        do {
96            oldpc = pc;
97            system->pcEventQueue.service(tc);
98            pc = thread->instAddr();
99        } while (oldpc != pc);
100    }
101
102  public:
103    void wakeup();
104
105    void zero_fill_64(Addr addr) {
106      static int warned = 0;
107      if (!warned) {
108        warn ("WH64 is not implemented");
109        warned = 1;
110      }
111    };
112
113  public:
114    BaseSimpleCPU(BaseSimpleCPUParams *params);
115    virtual ~BaseSimpleCPU();
116
117  public:
118    /** SimpleThread object, provides all the architectural state. */
119    SimpleThread *thread;
120
121    /** ThreadContext object, provides an interface for external
122     * objects to modify this thread's state.
123     */
124    ThreadContext *tc;
125
126    CheckerCPU *checker;
127
128  protected:
129
130    enum Status {
131        Idle,
132        Running,
133        Faulting,
134        ITBWaitResponse,
135        IcacheRetry,
136        IcacheWaitResponse,
137        IcacheWaitSwitch,
138        DTBWaitResponse,
139        DcacheRetry,
140        DcacheWaitResponse,
141        DcacheWaitSwitch,
142    };
143
144    Status _status;
145
146  public:
147
148    Addr dbg_vtophys(Addr addr);
149
150    bool interval_stats;
151
152    // current instruction
153    TheISA::MachInst inst;
154
155    StaticInstPtr curStaticInst;
156    StaticInstPtr curMacroStaticInst;
157
158    //This is the offset from the current pc that fetch should be performed at
159    Addr fetchOffset;
160    //This flag says to stay at the current pc. This is useful for
161    //instructions which go beyond MachInst boundaries.
162    bool stayAtPC;
163
164    void checkForInterrupts();
165    void setupFetchRequest(Request *req);
166    void preExecute();
167    void postExecute();
168    void advancePC(Fault fault);
169
170    virtual void deallocateContext(ThreadID thread_num);
171    virtual void haltContext(ThreadID thread_num);
172
173    // statistics
174    virtual void regStats();
175    virtual void resetStats();
176
177    virtual void startup();
178
179    // number of simulated instructions
180    Counter numInst;
181    Counter startNumInst;
182    Stats::Scalar numInsts;
183    Counter numOp;
184    Counter startNumOp;
185    Stats::Scalar numOps;
186
187    void countInst()
188    {
189        if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {
190            numInst++;
191            numInsts++;
192        }
193        numOp++;
194        numOps++;
195
196        system->totalNumInsts++;
197        thread->funcExeInst++;
198    }
199
200    virtual Counter totalInsts() const
201    {
202        return numInst - startNumInst;
203    }
204
205    virtual Counter totalOps() const
206    {
207        return numOp - startNumOp;
208    }
209
210    //number of integer alu accesses
211    Stats::Scalar numIntAluAccesses;
212
213    //number of float alu accesses
214    Stats::Scalar numFpAluAccesses;
215
216    //number of function calls/returns
217    Stats::Scalar numCallsReturns;
218
219    //conditional control instructions;
220    Stats::Scalar numCondCtrlInsts;
221
222    //number of int instructions
223    Stats::Scalar numIntInsts;
224
225    //number of float instructions
226    Stats::Scalar numFpInsts;
227
228    //number of integer register file accesses
229    Stats::Scalar numIntRegReads;
230    Stats::Scalar numIntRegWrites;
231
232    //number of float register file accesses
233    Stats::Scalar numFpRegReads;
234    Stats::Scalar numFpRegWrites;
235
236    //number of condition code register file accesses
237    Stats::Scalar numCCRegReads;
238    Stats::Scalar numCCRegWrites;
239
240    // number of simulated memory references
241    Stats::Scalar numMemRefs;
242    Stats::Scalar numLoadInsts;
243    Stats::Scalar numStoreInsts;
244
245    // number of idle cycles
246    Stats::Formula numIdleCycles;
247
248    // number of busy cycles
249    Stats::Formula numBusyCycles;
250
251    // number of simulated loads
252    Counter numLoad;
253    Counter startNumLoad;
254
255    // number of idle cycles
256    Stats::Average notIdleFraction;
257    Stats::Formula idleFraction;
258
259    // number of cycles stalled for I-cache responses
260    Stats::Scalar icacheStallCycles;
261    Counter lastIcacheStall;
262
263    // number of cycles stalled for I-cache retries
264    Stats::Scalar icacheRetryCycles;
265    Counter lastIcacheRetry;
266
267    // number of cycles stalled for D-cache responses
268    Stats::Scalar dcacheStallCycles;
269    Counter lastDcacheStall;
270
271    // number of cycles stalled for D-cache retries
272    Stats::Scalar dcacheRetryCycles;
273    Counter lastDcacheRetry;
274
275    void serializeThread(std::ostream &os, ThreadID tid);
276    void unserializeThread(Checkpoint *cp, const std::string &section,
277                           ThreadID tid);
278
279    // These functions are only used in CPU models that split
280    // effective address computation from the actual memory access.
281    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
282    Addr getEA()        { panic("BaseSimpleCPU::getEA() not implemented\n");
283        M5_DUMMY_RETURN}
284
285    // The register accessor methods provide the index of the
286    // instruction's operand (e.g., 0 or 1), not the architectural
287    // register index, to simplify the implementation of register
288    // renaming.  We find the architectural register index by indexing
289    // into the instruction's own operand index table.  Note that a
290    // raw pointer to the StaticInst is provided instead of a
291    // ref-counted StaticInstPtr to redice overhead.  This is fine as
292    // long as these methods don't copy the pointer into any long-term
293    // storage (which is pretty hard to imagine they would have reason
294    // to do).
295
296    uint64_t readIntRegOperand(const StaticInst *si, int idx)
297    {
298        numIntRegReads++;
299        return thread->readIntReg(si->srcRegIdx(idx));
300    }
301
302    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
303    {
304        numFpRegReads++;
305        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
306        return thread->readFloatReg(reg_idx);
307    }
308
309    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
310    {
311        numFpRegReads++;
312        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Reg_Base;
313        return thread->readFloatRegBits(reg_idx);
314    }
315
316    CCReg readCCRegOperand(const StaticInst *si, int idx)
317    {
318        numCCRegReads++;
319        int reg_idx = si->srcRegIdx(idx) - TheISA::CC_Reg_Base;
320        return thread->readCCReg(reg_idx);
321    }
322
323    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
324    {
325        numIntRegWrites++;
326        thread->setIntReg(si->destRegIdx(idx), val);
327    }
328
329    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
330    {
331        numFpRegWrites++;
332        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
333        thread->setFloatReg(reg_idx, val);
334    }
335
336    void setFloatRegOperandBits(const StaticInst *si, int idx,
337                                FloatRegBits val)
338    {
339        numFpRegWrites++;
340        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Reg_Base;
341        thread->setFloatRegBits(reg_idx, val);
342    }
343
344    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
345    {
346        numCCRegWrites++;
347        int reg_idx = si->destRegIdx(idx) - TheISA::CC_Reg_Base;
348        thread->setCCReg(reg_idx, val);
349    }
350
351    bool readPredicate() { return thread->readPredicate(); }
352    void setPredicate(bool val)
353    {
354        thread->setPredicate(val);
355        if (traceData) {
356            traceData->setPredicate(val);
357        }
358    }
359    TheISA::PCState pcState() { return thread->pcState(); }
360    void pcState(const TheISA::PCState &val) { thread->pcState(val); }
361    Addr instAddr() { return thread->instAddr(); }
362    Addr nextInstAddr() { return thread->nextInstAddr(); }
363    MicroPC microPC() { return thread->microPC(); }
364
365    MiscReg readMiscRegNoEffect(int misc_reg)
366    {
367        return thread->readMiscRegNoEffect(misc_reg);
368    }
369
370    MiscReg readMiscReg(int misc_reg)
371    {
372        numIntRegReads++;
373        return thread->readMiscReg(misc_reg);
374    }
375
376    void setMiscReg(int misc_reg, const MiscReg &val)
377    {
378        numIntRegWrites++;
379        return thread->setMiscReg(misc_reg, val);
380    }
381
382    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
383    {
384        numIntRegReads++;
385        int reg_idx = si->srcRegIdx(idx) - TheISA::Misc_Reg_Base;
386        return thread->readMiscReg(reg_idx);
387    }
388
389    void setMiscRegOperand(
390            const StaticInst *si, int idx, const MiscReg &val)
391    {
392        numIntRegWrites++;
393        int reg_idx = si->destRegIdx(idx) - TheISA::Misc_Reg_Base;
394        return thread->setMiscReg(reg_idx, val);
395    }
396
397    void demapPage(Addr vaddr, uint64_t asn)
398    {
399        thread->demapPage(vaddr, asn);
400    }
401
402    void demapInstPage(Addr vaddr, uint64_t asn)
403    {
404        thread->demapInstPage(vaddr, asn);
405    }
406
407    void demapDataPage(Addr vaddr, uint64_t asn)
408    {
409        thread->demapDataPage(vaddr, asn);
410    }
411
412    unsigned readStCondFailures() {
413        return thread->readStCondFailures();
414    }
415
416    void setStCondFailures(unsigned sc_failures) {
417        thread->setStCondFailures(sc_failures);
418    }
419
420     MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
421     {
422        panic("Simple CPU models do not support multithreaded "
423              "register access.\n");
424     }
425
426     void setRegOtherThread(int regIdx, const MiscReg &val,
427                            ThreadID tid = InvalidThreadID)
428     {
429        panic("Simple CPU models do not support multithreaded "
430              "register access.\n");
431     }
432
433    //Fault CacheOp(uint8_t Op, Addr EA);
434
435    Fault hwrei() { return thread->hwrei(); }
436    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
437
438    void
439    syscall(int64_t callnum)
440    {
441        if (FullSystem)
442            panic("Syscall emulation isn't available in FS mode.\n");
443
444        thread->syscall(callnum);
445    }
446
447    bool misspeculating() { return thread->misspeculating(); }
448    ThreadContext *tcBase() { return tc; }
449};
450
451#endif // __CPU_SIMPLE_BASE_HH__
452