base.hh revision 6221:58a3c04e6344
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Dave Greene
30 *          Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "arch/predecoder.hh"
37#include "base/statistics.hh"
38#include "config/full_system.hh"
39#include "cpu/base.hh"
40#include "cpu/simple_thread.hh"
41#include "cpu/pc_event.hh"
42#include "cpu/static_inst.hh"
43#include "mem/packet.hh"
44#include "mem/port.hh"
45#include "mem/request.hh"
46#include "sim/eventq.hh"
47#include "sim/system.hh"
48
49// forward declarations
50#if FULL_SYSTEM
51class Processor;
52namespace TheISA
53{
54    class ITB;
55    class DTB;
56}
57class MemObject;
58
59#else
60
61class Process;
62
63#endif // FULL_SYSTEM
64
65class RemoteGDB;
66class GDBListener;
67
68namespace TheISA
69{
70    class Predecoder;
71}
72class ThreadContext;
73class Checkpoint;
74
75namespace Trace {
76    class InstRecord;
77}
78
79class BaseSimpleCPUParams;
80
81
82class BaseSimpleCPU : public BaseCPU
83{
84  protected:
85    typedef TheISA::MiscReg MiscReg;
86    typedef TheISA::FloatReg FloatReg;
87    typedef TheISA::FloatRegBits FloatRegBits;
88
89  protected:
90    Trace::InstRecord *traceData;
91
92    inline void checkPcEventQueue() {
93        Addr oldpc;
94        do {
95            oldpc = thread->readPC();
96            system->pcEventQueue.service(tc);
97        } while (oldpc != thread->readPC());
98    }
99
100  public:
101    void wakeup();
102
103    void zero_fill_64(Addr addr) {
104      static int warned = 0;
105      if (!warned) {
106        warn ("WH64 is not implemented");
107        warned = 1;
108      }
109    };
110
111  public:
112    BaseSimpleCPU(BaseSimpleCPUParams *params);
113    virtual ~BaseSimpleCPU();
114
115  public:
116    /** SimpleThread object, provides all the architectural state. */
117    SimpleThread *thread;
118
119    /** ThreadContext object, provides an interface for external
120     * objects to modify this thread's state.
121     */
122    ThreadContext *tc;
123  protected:
124
125    enum Status {
126        Idle,
127        Running,
128        ITBWaitResponse,
129        IcacheRetry,
130        IcacheWaitResponse,
131        IcacheWaitSwitch,
132        DTBWaitResponse,
133        DcacheRetry,
134        DcacheWaitResponse,
135        DcacheWaitSwitch,
136        SwitchedOut
137    };
138
139    Status _status;
140
141  public:
142
143#if FULL_SYSTEM
144    Addr dbg_vtophys(Addr addr);
145
146    bool interval_stats;
147#endif
148
149    // current instruction
150    TheISA::MachInst inst;
151
152    // The predecoder
153    TheISA::Predecoder predecoder;
154
155    StaticInstPtr curStaticInst;
156    StaticInstPtr curMacroStaticInst;
157
158    //This is the offset from the current pc that fetch should be performed at
159    Addr fetchOffset;
160    //This flag says to stay at the current pc. This is useful for
161    //instructions which go beyond MachInst boundaries.
162    bool stayAtPC;
163
164    void checkForInterrupts();
165    void setupFetchRequest(Request *req);
166    void preExecute();
167    void postExecute();
168    void advancePC(Fault fault);
169
170    virtual void deallocateContext(int thread_num);
171    virtual void haltContext(int thread_num);
172
173    // statistics
174    virtual void regStats();
175    virtual void resetStats();
176
177    // number of simulated instructions
178    Counter numInst;
179    Counter startNumInst;
180    Stats::Scalar numInsts;
181
182    void countInst()
183    {
184        numInst++;
185        numInsts++;
186
187        thread->funcExeInst++;
188    }
189
190    virtual Counter totalInstructions() const
191    {
192        return numInst - startNumInst;
193    }
194
195    // Mask to align PCs to MachInst sized boundaries
196    static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
197
198    // number of simulated memory references
199    Stats::Scalar numMemRefs;
200
201    // number of simulated loads
202    Counter numLoad;
203    Counter startNumLoad;
204
205    // number of idle cycles
206    Stats::Average notIdleFraction;
207    Stats::Formula idleFraction;
208
209    // number of cycles stalled for I-cache responses
210    Stats::Scalar icacheStallCycles;
211    Counter lastIcacheStall;
212
213    // number of cycles stalled for I-cache retries
214    Stats::Scalar icacheRetryCycles;
215    Counter lastIcacheRetry;
216
217    // number of cycles stalled for D-cache responses
218    Stats::Scalar dcacheStallCycles;
219    Counter lastDcacheStall;
220
221    // number of cycles stalled for D-cache retries
222    Stats::Scalar dcacheRetryCycles;
223    Counter lastDcacheRetry;
224
225    virtual void serialize(std::ostream &os);
226    virtual void unserialize(Checkpoint *cp, const std::string &section);
227
228    // These functions are only used in CPU models that split
229    // effective address computation from the actual memory access.
230    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
231    Addr getEA()        { panic("BaseSimpleCPU::getEA() not implemented\n");
232        M5_DUMMY_RETURN}
233
234    void prefetch(Addr addr, unsigned flags)
235    {
236        // need to do this...
237    }
238
239    void writeHint(Addr addr, int size, unsigned flags)
240    {
241        // need to do this...
242    }
243
244
245    Fault copySrcTranslate(Addr src);
246
247    Fault copy(Addr dest);
248
249    // The register accessor methods provide the index of the
250    // instruction's operand (e.g., 0 or 1), not the architectural
251    // register index, to simplify the implementation of register
252    // renaming.  We find the architectural register index by indexing
253    // into the instruction's own operand index table.  Note that a
254    // raw pointer to the StaticInst is provided instead of a
255    // ref-counted StaticInstPtr to redice overhead.  This is fine as
256    // long as these methods don't copy the pointer into any long-term
257    // storage (which is pretty hard to imagine they would have reason
258    // to do).
259
260    uint64_t readIntRegOperand(const StaticInst *si, int idx)
261    {
262        return thread->readIntReg(si->srcRegIdx(idx));
263    }
264
265    FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
266    {
267        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
268        return thread->readFloatReg(reg_idx, width);
269    }
270
271    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
272    {
273        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
274        return thread->readFloatReg(reg_idx);
275    }
276
277    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
278                                         int width)
279    {
280        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
281        return thread->readFloatRegBits(reg_idx, width);
282    }
283
284    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
285    {
286        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
287        return thread->readFloatRegBits(reg_idx);
288    }
289
290    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
291    {
292        thread->setIntReg(si->destRegIdx(idx), val);
293    }
294
295    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
296                            int width)
297    {
298        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
299        thread->setFloatReg(reg_idx, val, width);
300    }
301
302    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
303    {
304        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
305        thread->setFloatReg(reg_idx, val);
306    }
307
308    void setFloatRegOperandBits(const StaticInst *si, int idx,
309                                FloatRegBits val, int width)
310    {
311        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
312        thread->setFloatRegBits(reg_idx, val, width);
313    }
314
315    void setFloatRegOperandBits(const StaticInst *si, int idx,
316                                FloatRegBits val)
317    {
318        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
319        thread->setFloatRegBits(reg_idx, val);
320    }
321
322    uint64_t readPC() { return thread->readPC(); }
323    uint64_t readMicroPC() { return thread->readMicroPC(); }
324    uint64_t readNextPC() { return thread->readNextPC(); }
325    uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
326    uint64_t readNextNPC() { return thread->readNextNPC(); }
327
328    void setPC(uint64_t val) { thread->setPC(val); }
329    void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
330    void setNextPC(uint64_t val) { thread->setNextPC(val); }
331    void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
332    void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
333
334    MiscReg readMiscRegNoEffect(int misc_reg)
335    {
336        return thread->readMiscRegNoEffect(misc_reg);
337    }
338
339    MiscReg readMiscReg(int misc_reg)
340    {
341        return thread->readMiscReg(misc_reg);
342    }
343
344    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
345    {
346        return thread->setMiscRegNoEffect(misc_reg, val);
347    }
348
349    void setMiscReg(int misc_reg, const MiscReg &val)
350    {
351        return thread->setMiscReg(misc_reg, val);
352    }
353
354    MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
355    {
356        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
357        return thread->readMiscRegNoEffect(reg_idx);
358    }
359
360    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
361    {
362        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
363        return thread->readMiscReg(reg_idx);
364    }
365
366    void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
367    {
368        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
369        return thread->setMiscRegNoEffect(reg_idx, val);
370    }
371
372    void setMiscRegOperand(
373            const StaticInst *si, int idx, const MiscReg &val)
374    {
375        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
376        return thread->setMiscReg(reg_idx, val);
377    }
378
379    void demapPage(Addr vaddr, uint64_t asn)
380    {
381        thread->demapPage(vaddr, asn);
382    }
383
384    void demapInstPage(Addr vaddr, uint64_t asn)
385    {
386        thread->demapInstPage(vaddr, asn);
387    }
388
389    void demapDataPage(Addr vaddr, uint64_t asn)
390    {
391        thread->demapDataPage(vaddr, asn);
392    }
393
394    unsigned readStCondFailures() {
395        return thread->readStCondFailures();
396    }
397
398    void setStCondFailures(unsigned sc_failures) {
399        thread->setStCondFailures(sc_failures);
400    }
401
402     MiscReg readRegOtherThread(int regIdx, ThreadID tid = InvalidThreadID)
403     {
404        panic("Simple CPU models do not support multithreaded "
405              "register access.\n");
406     }
407
408     void setRegOtherThread(int regIdx, const MiscReg &val,
409                            ThreadID tid = InvalidThreadID)
410     {
411        panic("Simple CPU models do not support multithreaded "
412              "register access.\n");
413     }
414
415    //Fault CacheOp(uint8_t Op, Addr EA);
416
417#if FULL_SYSTEM
418    Fault hwrei() { return thread->hwrei(); }
419    void ev5_trap(Fault fault) { fault->invoke(tc); }
420    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
421#else
422    void syscall(int64_t callnum) { thread->syscall(callnum); }
423#endif
424
425    bool misspeculating() { return thread->misspeculating(); }
426    ThreadContext *tcBase() { return tc; }
427};
428
429#endif // __CPU_SIMPLE_BASE_HH__
430