base.hh revision 5529
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Dave Greene
30 *          Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "arch/predecoder.hh"
37#include "base/statistics.hh"
38#include "config/full_system.hh"
39#include "cpu/base.hh"
40#include "cpu/simple_thread.hh"
41#include "cpu/pc_event.hh"
42#include "cpu/static_inst.hh"
43#include "mem/packet.hh"
44#include "mem/port.hh"
45#include "mem/request.hh"
46#include "sim/eventq.hh"
47#include "sim/system.hh"
48
49// forward declarations
50#if FULL_SYSTEM
51class Processor;
52namespace TheISA
53{
54    class ITB;
55    class DTB;
56}
57class MemObject;
58
59#else
60
61class Process;
62
63#endif // FULL_SYSTEM
64
65class RemoteGDB;
66class GDBListener;
67
68namespace TheISA
69{
70    class Predecoder;
71}
72class ThreadContext;
73class Checkpoint;
74
75namespace Trace {
76    class InstRecord;
77}
78
79class BaseSimpleCPUParams;
80
81
82class BaseSimpleCPU : public BaseCPU
83{
84  protected:
85    typedef TheISA::MiscReg MiscReg;
86    typedef TheISA::FloatReg FloatReg;
87    typedef TheISA::FloatRegBits FloatRegBits;
88
89  protected:
90    Trace::InstRecord *traceData;
91
92    inline void checkPcEventQueue() {
93        Addr oldpc;
94        do {
95            oldpc = thread->readPC();
96            system->pcEventQueue.service(tc);
97        } while (oldpc != thread->readPC());
98    }
99
100  public:
101    void post_interrupt(int int_num, int index);
102
103    void zero_fill_64(Addr addr) {
104      static int warned = 0;
105      if (!warned) {
106        warn ("WH64 is not implemented");
107        warned = 1;
108      }
109    };
110
111  public:
112    BaseSimpleCPU(BaseSimpleCPUParams *params);
113    virtual ~BaseSimpleCPU();
114
115  public:
116    /** SimpleThread object, provides all the architectural state. */
117    SimpleThread *thread;
118
119    /** ThreadContext object, provides an interface for external
120     * objects to modify this thread's state.
121     */
122    ThreadContext *tc;
123  protected:
124    int cpuId;
125
126    enum Status {
127        Idle,
128        Running,
129        IcacheRetry,
130        IcacheWaitResponse,
131        IcacheWaitSwitch,
132        DcacheRetry,
133        DcacheWaitResponse,
134        DcacheWaitSwitch,
135        SwitchedOut
136    };
137
138    Status _status;
139
140  public:
141
142#if FULL_SYSTEM
143    Addr dbg_vtophys(Addr addr);
144
145    bool interval_stats;
146#endif
147
148    // current instruction
149    TheISA::MachInst inst;
150
151    // The predecoder
152    TheISA::Predecoder predecoder;
153
154    StaticInstPtr curStaticInst;
155    StaticInstPtr curMacroStaticInst;
156
157    //This is the offset from the current pc that fetch should be performed at
158    Addr fetchOffset;
159    //This flag says to stay at the current pc. This is useful for
160    //instructions which go beyond MachInst boundaries.
161    bool stayAtPC;
162
163    void checkForInterrupts();
164    Fault setupFetchRequest(Request *req);
165    void preExecute();
166    void postExecute();
167    void advancePC(Fault fault);
168
169    virtual void deallocateContext(int thread_num);
170    virtual void haltContext(int thread_num);
171
172    // statistics
173    virtual void regStats();
174    virtual void resetStats();
175
176    // number of simulated instructions
177    Counter numInst;
178    Counter startNumInst;
179    Stats::Scalar<> numInsts;
180
181    void countInst()
182    {
183        numInst++;
184        numInsts++;
185
186        thread->funcExeInst++;
187    }
188
189    virtual Counter totalInstructions() const
190    {
191        return numInst - startNumInst;
192    }
193
194    // Mask to align PCs to MachInst sized boundaries
195    static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
196
197    // number of simulated memory references
198    Stats::Scalar<> numMemRefs;
199
200    // number of simulated loads
201    Counter numLoad;
202    Counter startNumLoad;
203
204    // number of idle cycles
205    Stats::Average<> notIdleFraction;
206    Stats::Formula idleFraction;
207
208    // number of cycles stalled for I-cache responses
209    Stats::Scalar<> icacheStallCycles;
210    Counter lastIcacheStall;
211
212    // number of cycles stalled for I-cache retries
213    Stats::Scalar<> icacheRetryCycles;
214    Counter lastIcacheRetry;
215
216    // number of cycles stalled for D-cache responses
217    Stats::Scalar<> dcacheStallCycles;
218    Counter lastDcacheStall;
219
220    // number of cycles stalled for D-cache retries
221    Stats::Scalar<> dcacheRetryCycles;
222    Counter lastDcacheRetry;
223
224    virtual void serialize(std::ostream &os);
225    virtual void unserialize(Checkpoint *cp, const std::string &section);
226
227    // These functions are only used in CPU models that split
228    // effective address computation from the actual memory access.
229    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
230    Addr getEA() 	{ panic("BaseSimpleCPU::getEA() not implemented\n");
231        M5_DUMMY_RETURN}
232
233    void prefetch(Addr addr, unsigned flags)
234    {
235        // need to do this...
236    }
237
238    void writeHint(Addr addr, int size, unsigned flags)
239    {
240        // need to do this...
241    }
242
243
244    Fault copySrcTranslate(Addr src);
245
246    Fault copy(Addr dest);
247
248    // The register accessor methods provide the index of the
249    // instruction's operand (e.g., 0 or 1), not the architectural
250    // register index, to simplify the implementation of register
251    // renaming.  We find the architectural register index by indexing
252    // into the instruction's own operand index table.  Note that a
253    // raw pointer to the StaticInst is provided instead of a
254    // ref-counted StaticInstPtr to redice overhead.  This is fine as
255    // long as these methods don't copy the pointer into any long-term
256    // storage (which is pretty hard to imagine they would have reason
257    // to do).
258
259    uint64_t readIntRegOperand(const StaticInst *si, int idx)
260    {
261        return thread->readIntReg(si->srcRegIdx(idx));
262    }
263
264    FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
265    {
266        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
267        return thread->readFloatReg(reg_idx, width);
268    }
269
270    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
271    {
272        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
273        return thread->readFloatReg(reg_idx);
274    }
275
276    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
277                                         int width)
278    {
279        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
280        return thread->readFloatRegBits(reg_idx, width);
281    }
282
283    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
284    {
285        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
286        return thread->readFloatRegBits(reg_idx);
287    }
288
289    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
290    {
291        thread->setIntReg(si->destRegIdx(idx), val);
292    }
293
294    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
295                            int width)
296    {
297        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
298        thread->setFloatReg(reg_idx, val, width);
299    }
300
301    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
302    {
303        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
304        thread->setFloatReg(reg_idx, val);
305    }
306
307    void setFloatRegOperandBits(const StaticInst *si, int idx,
308                                FloatRegBits val, int width)
309    {
310        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
311        thread->setFloatRegBits(reg_idx, val, width);
312    }
313
314    void setFloatRegOperandBits(const StaticInst *si, int idx,
315                                FloatRegBits val)
316    {
317        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
318        thread->setFloatRegBits(reg_idx, val);
319    }
320
321    uint64_t readPC() { return thread->readPC(); }
322    uint64_t readMicroPC() { return thread->readMicroPC(); }
323    uint64_t readNextPC() { return thread->readNextPC(); }
324    uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
325    uint64_t readNextNPC() { return thread->readNextNPC(); }
326
327    void setPC(uint64_t val) { thread->setPC(val); }
328    void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
329    void setNextPC(uint64_t val) { thread->setNextPC(val); }
330    void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
331    void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
332
333    MiscReg readMiscRegNoEffect(int misc_reg)
334    {
335        return thread->readMiscRegNoEffect(misc_reg);
336    }
337
338    MiscReg readMiscReg(int misc_reg)
339    {
340        return thread->readMiscReg(misc_reg);
341    }
342
343    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
344    {
345        return thread->setMiscRegNoEffect(misc_reg, val);
346    }
347
348    void setMiscReg(int misc_reg, const MiscReg &val)
349    {
350        return thread->setMiscReg(misc_reg, val);
351    }
352
353    MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
354    {
355        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
356        return thread->readMiscRegNoEffect(reg_idx);
357    }
358
359    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
360    {
361        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
362        return thread->readMiscReg(reg_idx);
363    }
364
365    void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
366    {
367        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
368        return thread->setMiscRegNoEffect(reg_idx, val);
369    }
370
371    void setMiscRegOperand(
372            const StaticInst *si, int idx, const MiscReg &val)
373    {
374        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
375        return thread->setMiscReg(reg_idx, val);
376    }
377
378    void demapPage(Addr vaddr, uint64_t asn)
379    {
380        thread->demapPage(vaddr, asn);
381    }
382
383    void demapInstPage(Addr vaddr, uint64_t asn)
384    {
385        thread->demapInstPage(vaddr, asn);
386    }
387
388    void demapDataPage(Addr vaddr, uint64_t asn)
389    {
390        thread->demapDataPage(vaddr, asn);
391    }
392
393    unsigned readStCondFailures() {
394        return thread->readStCondFailures();
395    }
396
397    void setStCondFailures(unsigned sc_failures) {
398        thread->setStCondFailures(sc_failures);
399    }
400
401     MiscReg readRegOtherThread(int regIdx, int tid = -1)
402     {
403        panic("Simple CPU models do not support multithreaded "
404              "register access.\n");
405     }
406
407     void setRegOtherThread(int regIdx, const MiscReg &val, int tid = -1)
408     {
409        panic("Simple CPU models do not support multithreaded "
410              "register access.\n");
411     }
412
413    //Fault CacheOp(uint8_t Op, Addr EA);
414
415#if FULL_SYSTEM
416    Fault hwrei() { return thread->hwrei(); }
417    void ev5_trap(Fault fault) { fault->invoke(tc); }
418    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
419#else
420    void syscall(int64_t callnum) { thread->syscall(callnum); }
421#endif
422
423    bool misspeculating() { return thread->misspeculating(); }
424    ThreadContext *tcBase() { return tc; }
425};
426
427#endif // __CPU_SIMPLE_BASE_HH__
428