base.hh revision 4998
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 *          Dave Greene
30 *          Nathan Binkert
31 */
32
33#ifndef __CPU_SIMPLE_BASE_HH__
34#define __CPU_SIMPLE_BASE_HH__
35
36#include "arch/predecoder.hh"
37#include "base/statistics.hh"
38#include "config/full_system.hh"
39#include "cpu/base.hh"
40#include "cpu/simple_thread.hh"
41#include "cpu/pc_event.hh"
42#include "cpu/static_inst.hh"
43#include "mem/packet.hh"
44#include "mem/port.hh"
45#include "mem/request.hh"
46#include "sim/eventq.hh"
47
48// forward declarations
49#if FULL_SYSTEM
50class Processor;
51namespace TheISA
52{
53    class ITB;
54    class DTB;
55}
56class MemObject;
57
58#else
59
60class Process;
61
62#endif // FULL_SYSTEM
63
64class RemoteGDB;
65class GDBListener;
66
67namespace TheISA
68{
69    class Predecoder;
70}
71class ThreadContext;
72class Checkpoint;
73
74namespace Trace {
75    class InstRecord;
76}
77
78
79class BaseSimpleCPU : public BaseCPU
80{
81  protected:
82    typedef TheISA::MiscReg MiscReg;
83    typedef TheISA::FloatReg FloatReg;
84    typedef TheISA::FloatRegBits FloatRegBits;
85
86  protected:
87    Trace::InstRecord *traceData;
88
89  public:
90    void post_interrupt(int int_num, int index);
91
92    void zero_fill_64(Addr addr) {
93      static int warned = 0;
94      if (!warned) {
95        warn ("WH64 is not implemented");
96        warned = 1;
97      }
98    };
99
100  public:
101    struct Params : public BaseCPU::Params
102    {
103        TheISA::ITB *itb;
104        TheISA::DTB *dtb;
105#if !FULL_SYSTEM
106        Process *process;
107#endif
108    };
109    BaseSimpleCPU(Params *params);
110    virtual ~BaseSimpleCPU();
111
112  public:
113    /** SimpleThread object, provides all the architectural state. */
114    SimpleThread *thread;
115
116    /** ThreadContext object, provides an interface for external
117     * objects to modify this thread's state.
118     */
119    ThreadContext *tc;
120
121#if FULL_SYSTEM
122    Addr dbg_vtophys(Addr addr);
123
124    bool interval_stats;
125#endif
126
127    // current instruction
128    TheISA::MachInst inst;
129
130    // The predecoder
131    TheISA::Predecoder predecoder;
132
133    StaticInstPtr curStaticInst;
134    StaticInstPtr curMacroStaticInst;
135
136    //This is the offset from the current pc that fetch should be performed at
137    Addr fetchOffset;
138    //This flag says to stay at the current pc. This is useful for
139    //instructions which go beyond MachInst boundaries.
140    bool stayAtPC;
141
142    void checkForInterrupts();
143    Fault setupFetchRequest(Request *req);
144    void preExecute();
145    void postExecute();
146    void advancePC(Fault fault);
147
148    virtual void deallocateContext(int thread_num);
149    virtual void haltContext(int thread_num);
150
151    // statistics
152    virtual void regStats();
153    virtual void resetStats();
154
155    // number of simulated instructions
156    Counter numInst;
157    Counter startNumInst;
158    Stats::Scalar<> numInsts;
159
160    void countInst()
161    {
162        numInst++;
163        numInsts++;
164
165        thread->funcExeInst++;
166    }
167
168    virtual Counter totalInstructions() const
169    {
170        return numInst - startNumInst;
171    }
172
173    // Mask to align PCs to MachInst sized boundaries
174    static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
175
176    // number of simulated memory references
177    Stats::Scalar<> numMemRefs;
178
179    // number of simulated loads
180    Counter numLoad;
181    Counter startNumLoad;
182
183    // number of idle cycles
184    Stats::Average<> notIdleFraction;
185    Stats::Formula idleFraction;
186
187    // number of cycles stalled for I-cache responses
188    Stats::Scalar<> icacheStallCycles;
189    Counter lastIcacheStall;
190
191    // number of cycles stalled for I-cache retries
192    Stats::Scalar<> icacheRetryCycles;
193    Counter lastIcacheRetry;
194
195    // number of cycles stalled for D-cache responses
196    Stats::Scalar<> dcacheStallCycles;
197    Counter lastDcacheStall;
198
199    // number of cycles stalled for D-cache retries
200    Stats::Scalar<> dcacheRetryCycles;
201    Counter lastDcacheRetry;
202
203    virtual void serialize(std::ostream &os);
204    virtual void unserialize(Checkpoint *cp, const std::string &section);
205
206    // These functions are only used in CPU models that split
207    // effective address computation from the actual memory access.
208    void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
209    Addr getEA() 	{ panic("BaseSimpleCPU::getEA() not implemented\n");
210        M5_DUMMY_RETURN}
211
212    void prefetch(Addr addr, unsigned flags)
213    {
214        // need to do this...
215    }
216
217    void writeHint(Addr addr, int size, unsigned flags)
218    {
219        // need to do this...
220    }
221
222
223    Fault copySrcTranslate(Addr src);
224
225    Fault copy(Addr dest);
226
227    // The register accessor methods provide the index of the
228    // instruction's operand (e.g., 0 or 1), not the architectural
229    // register index, to simplify the implementation of register
230    // renaming.  We find the architectural register index by indexing
231    // into the instruction's own operand index table.  Note that a
232    // raw pointer to the StaticInst is provided instead of a
233    // ref-counted StaticInstPtr to redice overhead.  This is fine as
234    // long as these methods don't copy the pointer into any long-term
235    // storage (which is pretty hard to imagine they would have reason
236    // to do).
237
238    uint64_t readIntRegOperand(const StaticInst *si, int idx)
239    {
240        return thread->readIntReg(si->srcRegIdx(idx));
241    }
242
243    FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
244    {
245        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
246        return thread->readFloatReg(reg_idx, width);
247    }
248
249    FloatReg readFloatRegOperand(const StaticInst *si, int idx)
250    {
251        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
252        return thread->readFloatReg(reg_idx);
253    }
254
255    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
256                                         int width)
257    {
258        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
259        return thread->readFloatRegBits(reg_idx, width);
260    }
261
262    FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
263    {
264        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
265        return thread->readFloatRegBits(reg_idx);
266    }
267
268    void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
269    {
270        thread->setIntReg(si->destRegIdx(idx), val);
271    }
272
273    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
274                            int width)
275    {
276        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
277        thread->setFloatReg(reg_idx, val, width);
278    }
279
280    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
281    {
282        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
283        thread->setFloatReg(reg_idx, val);
284    }
285
286    void setFloatRegOperandBits(const StaticInst *si, int idx,
287                                FloatRegBits val, int width)
288    {
289        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
290        thread->setFloatRegBits(reg_idx, val, width);
291    }
292
293    void setFloatRegOperandBits(const StaticInst *si, int idx,
294                                FloatRegBits val)
295    {
296        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
297        thread->setFloatRegBits(reg_idx, val);
298    }
299
300    uint64_t readPC() { return thread->readPC(); }
301    uint64_t readMicroPC() { return thread->readMicroPC(); }
302    uint64_t readNextPC() { return thread->readNextPC(); }
303    uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
304    uint64_t readNextNPC() { return thread->readNextNPC(); }
305
306    void setPC(uint64_t val) { thread->setPC(val); }
307    void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
308    void setNextPC(uint64_t val) { thread->setNextPC(val); }
309    void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
310    void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
311
312    MiscReg readMiscRegNoEffect(int misc_reg)
313    {
314        return thread->readMiscRegNoEffect(misc_reg);
315    }
316
317    MiscReg readMiscReg(int misc_reg)
318    {
319        return thread->readMiscReg(misc_reg);
320    }
321
322    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
323    {
324        return thread->setMiscRegNoEffect(misc_reg, val);
325    }
326
327    void setMiscReg(int misc_reg, const MiscReg &val)
328    {
329        return thread->setMiscReg(misc_reg, val);
330    }
331
332    MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
333    {
334        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
335        return thread->readMiscRegNoEffect(reg_idx);
336    }
337
338    MiscReg readMiscRegOperand(const StaticInst *si, int idx)
339    {
340        int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
341        return thread->readMiscReg(reg_idx);
342    }
343
344    void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
345    {
346        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
347        return thread->setMiscRegNoEffect(reg_idx, val);
348    }
349
350    void setMiscRegOperand(
351            const StaticInst *si, int idx, const MiscReg &val)
352    {
353        int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
354        return thread->setMiscReg(reg_idx, val);
355    }
356
357    unsigned readStCondFailures() {
358        return thread->readStCondFailures();
359    }
360
361    void setStCondFailures(unsigned sc_failures) {
362        thread->setStCondFailures(sc_failures);
363    }
364
365     MiscReg readRegOtherThread(int regIdx, int tid = -1)
366     {
367        panic("Simple CPU models do not support multithreaded "
368              "register access.\n");
369     }
370
371     void setRegOtherThread(int regIdx, const MiscReg &val, int tid = -1)
372     {
373        panic("Simple CPU models do not support multithreaded "
374              "register access.\n");
375     }
376
377#if FULL_SYSTEM
378    Fault hwrei() { return thread->hwrei(); }
379    void ev5_trap(Fault fault) { fault->invoke(tc); }
380    bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
381#else
382    void syscall(int64_t callnum) { thread->syscall(callnum); }
383#endif
384
385    bool misspeculating() { return thread->misspeculating(); }
386    ThreadContext *tcBase() { return tc; }
387};
388
389#endif // __CPU_SIMPLE_BASE_HH__
390