base.hh revision 726
1/* 2 * Copyright (c) 2003 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#ifndef __SIMPLE_CPU_HH__ 30#define __SIMPLE_CPU_HH__ 31 32#include "cpu/base_cpu.hh" 33#include "sim/eventq.hh" 34#include "base/loader/symtab.hh" 35#include "cpu/pc_event.hh" 36#include "base/statistics.hh" 37#include "cpu/exec_context.hh" 38#include "cpu/static_inst.hh" 39 40// forward declarations 41#ifdef FULL_SYSTEM 42class Processor; 43class Kernel; 44class AlphaITB; 45class AlphaDTB; 46class PhysicalMemory; 47 48class RemoteGDB; 49class GDBListener; 50 51#else 52 53class Process; 54 55#endif // FULL_SYSTEM 56 57class MemInterface; 58class Checkpoint; 59 60namespace Trace { 61 class InstRecord; 62} 63 64class SimpleCPU : public BaseCPU 65{ 66 public: 67 // main simulation loop (one cycle) 68 void tick(); 69 70 private: 71 class TickEvent : public Event 72 { 73 private: 74 SimpleCPU *cpu; 75 76 public: 77 TickEvent(SimpleCPU *c); 78 void process(); 79 const char *description(); 80 }; 81 82 TickEvent tickEvent; 83 84 /// Schedule tick event, regardless of its current state. 85 void scheduleTickEvent(int delay) 86 { 87 if (tickEvent.squashed()) 88 tickEvent.reschedule(curTick + delay); 89 else if (!tickEvent.scheduled()) 90 tickEvent.schedule(curTick + delay); 91 } 92 93 /// Unschedule tick event, regardless of its current state. 94 void unscheduleTickEvent() 95 { 96 if (tickEvent.scheduled()) 97 tickEvent.squash(); 98 } 99 100 private: 101 Trace::InstRecord *traceData; 102 template<typename T> 103 void trace_data(T data) { 104 if (traceData) { 105 traceData->setData(data); 106 } 107 }; 108 109 public: 110 // 111 enum Status { 112 Running, 113 Idle, 114 IcacheMissStall, 115 IcacheMissComplete, 116 DcacheMissStall, 117 SwitchedOut 118 }; 119 120 private: 121 Status _status; 122 123 public: 124 void post_interrupt(int int_num, int index); 125 126 void zero_fill_64(Addr addr) { 127 static int warned = 0; 128 if (!warned) { 129 warn ("WH64 is not implemented"); 130 warned = 1; 131 } 132 }; 133 134#ifdef FULL_SYSTEM 135 136 SimpleCPU(const std::string &_name, 137 System *_system, 138 Counter max_insts_any_thread, Counter max_insts_all_threads, 139 Counter max_loads_any_thread, Counter max_loads_all_threads, 140 AlphaITB *itb, AlphaDTB *dtb, FunctionalMemory *mem, 141 MemInterface *icache_interface, MemInterface *dcache_interface, 142 bool _def_reg, Tick freq); 143 144#else 145 146 SimpleCPU(const std::string &_name, Process *_process, 147 Counter max_insts_any_thread, 148 Counter max_insts_all_threads, 149 Counter max_loads_any_thread, 150 Counter max_loads_all_threads, 151 MemInterface *icache_interface, MemInterface *dcache_interface, 152 bool _def_reg); 153 154#endif 155 156 virtual ~SimpleCPU(); 157 virtual void init(); 158 159 // execution context 160 ExecContext *xc; 161 162 void switchOut(); 163 void takeOverFrom(BaseCPU *oldCPU); 164 165#ifdef FULL_SYSTEM 166 Addr dbg_vtophys(Addr addr); 167 168 bool interval_stats; 169#endif 170 171 // L1 instruction cache 172 MemInterface *icacheInterface; 173 174 // L1 data cache 175 MemInterface *dcacheInterface; 176 177 bool defer_registration; 178 179 // current instruction 180 MachInst inst; 181 182 // Refcounted pointer to the one memory request. 183 MemReqPtr memReq; 184 185 class CacheCompletionEvent : public Event 186 { 187 private: 188 SimpleCPU *cpu; 189 190 public: 191 CacheCompletionEvent(SimpleCPU *_cpu); 192 193 virtual void process(); 194 virtual const char *description(); 195 }; 196 197 CacheCompletionEvent cacheCompletionEvent; 198 199 Status status() const { return _status; } 200 201 virtual void activateContext(int thread_num, int delay); 202 virtual void suspendContext(int thread_num); 203 virtual void deallocateContext(int thread_num); 204 virtual void haltContext(int thread_num); 205 206 // statistics 207 virtual void regStats(); 208 virtual void resetStats(); 209 210 // number of simulated instructions 211 Counter numInst; 212 Counter startNumInst; 213 Statistics::Scalar<> numInsts; 214 215 virtual Counter totalInstructions() const 216 { 217 return numInst - startNumInst; 218 } 219 220 // number of simulated memory references 221 Statistics::Scalar<> numMemRefs; 222 223 // number of simulated loads 224 Counter numLoad; 225 Counter startNumLoad; 226 227 // number of idle cycles 228 Statistics::Average<> notIdleFraction; 229 Statistics::Formula idleFraction; 230 231 // number of cycles stalled for I-cache misses 232 Statistics::Scalar<> icacheStallCycles; 233 Counter lastIcacheStall; 234 235 // number of cycles stalled for D-cache misses 236 Statistics::Scalar<> dcacheStallCycles; 237 Counter lastDcacheStall; 238 239 void processCacheCompletion(); 240 241 virtual void serialize(std::ostream &os); 242 virtual void unserialize(Checkpoint *cp, const std::string §ion); 243 244 template <class T> 245 Fault read(Addr addr, T &data, unsigned flags); 246 247 template <class T> 248 Fault write(T data, Addr addr, unsigned flags, 249 uint64_t *res); 250 251 void prefetch(Addr addr, unsigned flags) 252 { 253 // need to do this... 254 } 255 256 void writeHint(Addr addr, int size) 257 { 258 // need to do this... 259 } 260 261 Fault copySrcTranslate(Addr src); 262 263 Fault copy(Addr dest); 264 265 // The register accessor methods provide the index of the 266 // instruction's operand (e.g., 0 or 1), not the architectural 267 // register index, to simplify the implementation of register 268 // renaming. We find the architectural register index by indexing 269 // into the instruction's own operand index table. Note that a 270 // raw pointer to the StaticInst is provided instead of a 271 // ref-counted StaticInstPtr to redice overhead. This is fine as 272 // long as these methods don't copy the pointer into any long-term 273 // storage (which is pretty hard to imagine they would have reason 274 // to do). 275 276 uint64_t readIntReg(StaticInst<TheISA> *si, int idx) 277 { 278 return xc->readIntReg(si->srcRegIdx(idx)); 279 } 280 281 float readFloatRegSingle(StaticInst<TheISA> *si, int idx) 282 { 283 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; 284 return xc->readFloatRegSingle(reg_idx); 285 } 286 287 double readFloatRegDouble(StaticInst<TheISA> *si, int idx) 288 { 289 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; 290 return xc->readFloatRegDouble(reg_idx); 291 } 292 293 uint64_t readFloatRegInt(StaticInst<TheISA> *si, int idx) 294 { 295 int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag; 296 return xc->readFloatRegInt(reg_idx); 297 } 298 299 void setIntReg(StaticInst<TheISA> *si, int idx, uint64_t val) 300 { 301 xc->setIntReg(si->destRegIdx(idx), val); 302 } 303 304 void setFloatRegSingle(StaticInst<TheISA> *si, int idx, float val) 305 { 306 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; 307 xc->setFloatRegSingle(reg_idx, val); 308 } 309 310 void setFloatRegDouble(StaticInst<TheISA> *si, int idx, double val) 311 { 312 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; 313 xc->setFloatRegDouble(reg_idx, val); 314 } 315 316 void setFloatRegInt(StaticInst<TheISA> *si, int idx, uint64_t val) 317 { 318 int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag; 319 xc->setFloatRegInt(reg_idx, val); 320 } 321 322 uint64_t readPC() { return xc->readPC(); } 323 void setNextPC(uint64_t val) { xc->setNextPC(val); } 324 325 uint64_t readUniq() { return xc->readUniq(); } 326 void setUniq(uint64_t val) { xc->setUniq(val); } 327 328 uint64_t readFpcr() { return xc->readFpcr(); } 329 void setFpcr(uint64_t val) { xc->setFpcr(val); } 330 331#ifdef FULL_SYSTEM 332 uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); } 333 Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); } 334 Fault hwrei() { return xc->hwrei(); } 335 int readIntrFlag() { return xc->readIntrFlag(); } 336 void setIntrFlag(int val) { xc->setIntrFlag(val); } 337 bool inPalMode() { return xc->inPalMode(); } 338 void ev5_trap(Fault fault) { xc->ev5_trap(fault); } 339 bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); } 340#else 341 void syscall() { xc->syscall(); } 342#endif 343 344 bool misspeculating() { return xc->misspeculating(); } 345 ExecContext *xcBase() { return xc; } 346}; 347 348#endif // __SIMPLE_CPU_HH__ 349