base.hh revision 1717
1/*
2 * Copyright (c) 2002-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
30#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
31
32#include "base/statistics.hh"
33#include "cpu/base.hh"
34#include "cpu/exec_context.hh"
35#include "cpu/pc_event.hh"
36#include "cpu/sampler/sampler.hh"
37#include "cpu/static_inst.hh"
38#include "sim/eventq.hh"
39
40// forward declarations
41#ifdef FULL_SYSTEM
42class Processor;
43class AlphaITB;
44class AlphaDTB;
45class PhysicalMemory;
46
47class RemoteGDB;
48class GDBListener;
49
50#else
51
52class Process;
53
54#endif // FULL_SYSTEM
55
56class MemInterface;
57class Checkpoint;
58
59namespace Trace {
60    class InstRecord;
61}
62
63class SimpleCPU : public BaseCPU
64{
65  public:
66    // main simulation loop (one cycle)
67    void tick();
68
69  private:
70    struct TickEvent : public Event
71    {
72        SimpleCPU *cpu;
73        int width;
74
75        TickEvent(SimpleCPU *c, int w);
76        void process();
77        const char *description();
78    };
79
80    TickEvent tickEvent;
81
82    /// Schedule tick event, regardless of its current state.
83    void scheduleTickEvent(int numCycles)
84    {
85        if (tickEvent.squashed())
86            tickEvent.reschedule(curTick + cycles(numCycles));
87        else if (!tickEvent.scheduled())
88            tickEvent.schedule(curTick + cycles(numCycles));
89    }
90
91    /// Unschedule tick event, regardless of its current state.
92    void unscheduleTickEvent()
93    {
94        if (tickEvent.scheduled())
95            tickEvent.squash();
96    }
97
98  private:
99    Trace::InstRecord *traceData;
100
101  public:
102    //
103    enum Status {
104        Running,
105        Idle,
106        IcacheMissStall,
107        IcacheMissComplete,
108        DcacheMissStall,
109        DcacheMissSwitch,
110        SwitchedOut
111    };
112
113  private:
114    Status _status;
115
116  public:
117    void post_interrupt(int int_num, int index);
118
119    void zero_fill_64(Addr addr) {
120      static int warned = 0;
121      if (!warned) {
122        warn ("WH64 is not implemented");
123        warned = 1;
124      }
125    };
126
127  public:
128    struct Params : public BaseCPU::Params
129    {
130        MemInterface *icache_interface;
131        MemInterface *dcache_interface;
132        int width;
133#ifdef FULL_SYSTEM
134        AlphaITB *itb;
135        AlphaDTB *dtb;
136        FunctionalMemory *mem;
137#else
138        Process *process;
139#endif
140    };
141    SimpleCPU(Params *params);
142    virtual ~SimpleCPU();
143
144  public:
145    // execution context
146    ExecContext *xc;
147
148    void switchOut(SamplingCPU *s);
149    void takeOverFrom(BaseCPU *oldCPU);
150
151#ifdef FULL_SYSTEM
152    Addr dbg_vtophys(Addr addr);
153
154    bool interval_stats;
155#endif
156
157    // L1 instruction cache
158    MemInterface *icacheInterface;
159
160    // L1 data cache
161    MemInterface *dcacheInterface;
162
163    // current instruction
164    MachInst inst;
165
166    // Refcounted pointer to the one memory request.
167    MemReqPtr memReq;
168
169    // Pointer to the sampler that is telling us to switchover.
170    // Used to signal the completion of the pipe drain and schedule
171    // the next switchover
172    SamplingCPU *sampler;
173
174    StaticInstPtr<TheISA> curStaticInst;
175
176    class CacheCompletionEvent : public Event
177    {
178      private:
179        SimpleCPU *cpu;
180
181      public:
182        CacheCompletionEvent(SimpleCPU *_cpu);
183
184        virtual void process();
185        virtual const char *description();
186    };
187
188    CacheCompletionEvent cacheCompletionEvent;
189
190    Status status() const { return _status; }
191
192    virtual void activateContext(int thread_num, int delay);
193    virtual void suspendContext(int thread_num);
194    virtual void deallocateContext(int thread_num);
195    virtual void haltContext(int thread_num);
196
197    // statistics
198    virtual void regStats();
199    virtual void resetStats();
200
201    // number of simulated instructions
202    Counter numInst;
203    Counter startNumInst;
204    Stats::Scalar<> numInsts;
205
206    virtual Counter totalInstructions() const
207    {
208        return numInst - startNumInst;
209    }
210
211    // number of simulated memory references
212    Stats::Scalar<> numMemRefs;
213
214    // number of simulated loads
215    Counter numLoad;
216    Counter startNumLoad;
217
218    // number of idle cycles
219    Stats::Average<> notIdleFraction;
220    Stats::Formula idleFraction;
221
222    // number of cycles stalled for I-cache misses
223    Stats::Scalar<> icacheStallCycles;
224    Counter lastIcacheStall;
225
226    // number of cycles stalled for D-cache misses
227    Stats::Scalar<> dcacheStallCycles;
228    Counter lastDcacheStall;
229
230    void processCacheCompletion();
231
232    virtual void serialize(std::ostream &os);
233    virtual void unserialize(Checkpoint *cp, const std::string &section);
234
235    template <class T>
236    Fault read(Addr addr, T &data, unsigned flags);
237
238    template <class T>
239    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
240
241    // These functions are only used in CPU models that split
242    // effective address computation from the actual memory access.
243    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
244    Addr getEA() 	{ panic("SimpleCPU::getEA() not implemented\n"); }
245
246    void prefetch(Addr addr, unsigned flags)
247    {
248        // need to do this...
249    }
250
251    void writeHint(Addr addr, int size, unsigned flags)
252    {
253        // need to do this...
254    }
255
256    Fault copySrcTranslate(Addr src);
257
258    Fault copy(Addr dest);
259
260    // The register accessor methods provide the index of the
261    // instruction's operand (e.g., 0 or 1), not the architectural
262    // register index, to simplify the implementation of register
263    // renaming.  We find the architectural register index by indexing
264    // into the instruction's own operand index table.  Note that a
265    // raw pointer to the StaticInst is provided instead of a
266    // ref-counted StaticInstPtr to redice overhead.  This is fine as
267    // long as these methods don't copy the pointer into any long-term
268    // storage (which is pretty hard to imagine they would have reason
269    // to do).
270
271    uint64_t readIntReg(const StaticInst<TheISA> *si, int idx)
272    {
273        return xc->readIntReg(si->srcRegIdx(idx));
274    }
275
276    float readFloatRegSingle(const StaticInst<TheISA> *si, int idx)
277    {
278        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
279        return xc->readFloatRegSingle(reg_idx);
280    }
281
282    double readFloatRegDouble(const StaticInst<TheISA> *si, int idx)
283    {
284        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
285        return xc->readFloatRegDouble(reg_idx);
286    }
287
288    uint64_t readFloatRegInt(const StaticInst<TheISA> *si, int idx)
289    {
290        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
291        return xc->readFloatRegInt(reg_idx);
292    }
293
294    void setIntReg(const StaticInst<TheISA> *si, int idx, uint64_t val)
295    {
296        xc->setIntReg(si->destRegIdx(idx), val);
297    }
298
299    void setFloatRegSingle(const StaticInst<TheISA> *si, int idx, float val)
300    {
301        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
302        xc->setFloatRegSingle(reg_idx, val);
303    }
304
305    void setFloatRegDouble(const StaticInst<TheISA> *si, int idx, double val)
306    {
307        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
308        xc->setFloatRegDouble(reg_idx, val);
309    }
310
311    void setFloatRegInt(const StaticInst<TheISA> *si, int idx, uint64_t val)
312    {
313        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
314        xc->setFloatRegInt(reg_idx, val);
315    }
316
317    uint64_t readPC() { return xc->readPC(); }
318    void setNextPC(uint64_t val) { xc->setNextPC(val); }
319
320    uint64_t readUniq() { return xc->readUniq(); }
321    void setUniq(uint64_t val) { xc->setUniq(val); }
322
323    uint64_t readFpcr() { return xc->readFpcr(); }
324    void setFpcr(uint64_t val) { xc->setFpcr(val); }
325
326#ifdef FULL_SYSTEM
327    uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
328    Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
329    Fault hwrei() { return xc->hwrei(); }
330    int readIntrFlag() { return xc->readIntrFlag(); }
331    void setIntrFlag(int val) { xc->setIntrFlag(val); }
332    bool inPalMode() { return xc->inPalMode(); }
333    void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
334    bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
335#else
336    void syscall() { xc->syscall(); }
337#endif
338
339    bool misspeculating() { return xc->misspeculating(); }
340    ExecContext *xcBase() { return xc; }
341};
342
343#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
344