atomic.cc revision 9523
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/atomic.hh"
49#include "cpu/exetrace.hh"
50#include "debug/Drain.hh"
51#include "debug/ExecFaulting.hh"
52#include "debug/SimpleCPU.hh"
53#include "mem/packet.hh"
54#include "mem/packet_access.hh"
55#include "mem/physical.hh"
56#include "params/AtomicSimpleCPU.hh"
57#include "sim/faults.hh"
58#include "sim/system.hh"
59#include "sim/full_system.hh"
60
61using namespace std;
62using namespace TheISA;
63
64AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
65    : Event(CPU_Tick_Pri), cpu(c)
66{
67}
68
69
70void
71AtomicSimpleCPU::TickEvent::process()
72{
73    cpu->tick();
74}
75
76const char *
77AtomicSimpleCPU::TickEvent::description() const
78{
79    return "AtomicSimpleCPU tick";
80}
81
82void
83AtomicSimpleCPU::init()
84{
85    BaseCPU::init();
86
87    // Initialise the ThreadContext's memory proxies
88    tcBase()->initMemProxies(tcBase());
89
90    if (FullSystem && !params()->switched_out) {
91        ThreadID size = threadContexts.size();
92        for (ThreadID i = 0; i < size; ++i) {
93            ThreadContext *tc = threadContexts[i];
94            // initialize CPU, including PC
95            TheISA::initCPU(tc, tc->contextId());
96        }
97    }
98
99    // Atomic doesn't do MT right now, so contextId == threadId
100    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
101    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
103}
104
105AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
106    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
107      simulate_data_stalls(p->simulate_data_stalls),
108      simulate_inst_stalls(p->simulate_inst_stalls),
109      drain_manager(NULL),
110      icachePort(name() + ".icache_port", this),
111      dcachePort(name() + ".dcache_port", this),
112      fastmem(p->fastmem)
113{
114    _status = Idle;
115}
116
117
118AtomicSimpleCPU::~AtomicSimpleCPU()
119{
120    if (tickEvent.scheduled()) {
121        deschedule(tickEvent);
122    }
123}
124
125unsigned int
126AtomicSimpleCPU::drain(DrainManager *dm)
127{
128    assert(!drain_manager);
129    if (switchedOut())
130        return 0;
131
132    if (!isDrained()) {
133        DPRINTF(Drain, "Requesting drain: %s\n", pcState());
134        drain_manager = dm;
135        return 1;
136    } else {
137        if (tickEvent.scheduled())
138            deschedule(tickEvent);
139
140        DPRINTF(Drain, "Not executing microcode, no need to drain.\n");
141        return 0;
142    }
143}
144
145void
146AtomicSimpleCPU::drainResume()
147{
148    assert(!tickEvent.scheduled());
149    assert(!drain_manager);
150    if (switchedOut())
151        return;
152
153    DPRINTF(SimpleCPU, "Resume\n");
154    verifyMemoryMode();
155
156    assert(!threadContexts.empty());
157    if (threadContexts.size() > 1)
158        fatal("The atomic CPU only supports one thread.\n");
159
160    if (thread->status() == ThreadContext::Active) {
161        schedule(tickEvent, nextCycle());
162        _status = BaseSimpleCPU::Running;
163    } else {
164        _status = BaseSimpleCPU::Idle;
165    }
166
167    system->totalNumInsts = 0;
168}
169
170bool
171AtomicSimpleCPU::tryCompleteDrain()
172{
173    if (!drain_manager)
174        return false;
175
176    DPRINTF(Drain, "tryCompleteDrain: %s\n", pcState());
177    if (!isDrained())
178        return false;
179
180    DPRINTF(Drain, "CPU done draining, processing drain event\n");
181    drain_manager->signalDrainDone();
182    drain_manager = NULL;
183
184    return true;
185}
186
187
188void
189AtomicSimpleCPU::switchOut()
190{
191    BaseSimpleCPU::switchOut();
192
193    assert(!tickEvent.scheduled());
194    assert(_status == BaseSimpleCPU::Running || _status == Idle);
195    assert(isDrained());
196}
197
198
199void
200AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
201{
202    BaseSimpleCPU::takeOverFrom(oldCPU);
203
204    // The tick event should have been descheduled by drain()
205    assert(!tickEvent.scheduled());
206
207    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
208    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
209    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
210}
211
212void
213AtomicSimpleCPU::verifyMemoryMode() const
214{
215    if (system->getMemoryMode() != Enums::atomic) {
216        fatal("The atomic CPU requires the memory system to be in "
217              "'atomic' mode.\n");
218    }
219}
220
221void
222AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
223{
224    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
225
226    assert(thread_num == 0);
227    assert(thread);
228
229    assert(_status == Idle);
230    assert(!tickEvent.scheduled());
231
232    notIdleFraction++;
233    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
234
235    //Make sure ticks are still on multiples of cycles
236    schedule(tickEvent, clockEdge(delay));
237    _status = BaseSimpleCPU::Running;
238}
239
240
241void
242AtomicSimpleCPU::suspendContext(ThreadID thread_num)
243{
244    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
245
246    assert(thread_num == 0);
247    assert(thread);
248
249    if (_status == Idle)
250        return;
251
252    assert(_status == BaseSimpleCPU::Running);
253
254    // tick event may not be scheduled if this gets called from inside
255    // an instruction's execution, e.g. "quiesce"
256    if (tickEvent.scheduled())
257        deschedule(tickEvent);
258
259    notIdleFraction--;
260    _status = Idle;
261}
262
263
264Fault
265AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
266                         unsigned size, unsigned flags)
267{
268    // use the CPU's statically allocated read request and packet objects
269    Request *req = &data_read_req;
270
271    if (traceData) {
272        traceData->setAddr(addr);
273    }
274
275    //The block size of our peer.
276    unsigned blockSize = dcachePort.peerBlockSize();
277    //The size of the data we're trying to read.
278    int fullSize = size;
279
280    //The address of the second part of this access if it needs to be split
281    //across a cache line boundary.
282    Addr secondAddr = roundDown(addr + size - 1, blockSize);
283
284    if (secondAddr > addr)
285        size = secondAddr - addr;
286
287    dcache_latency = 0;
288
289    while (1) {
290        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
291
292        // translate to physical address
293        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
294
295        // Now do the access.
296        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
297            Packet pkt = Packet(req,
298                                req->isLLSC() ? MemCmd::LoadLockedReq :
299                                MemCmd::ReadReq);
300            pkt.dataStatic(data);
301
302            if (req->isMmappedIpr())
303                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
304            else {
305                if (fastmem && system->isMemAddr(pkt.getAddr()))
306                    system->getPhysMem().access(&pkt);
307                else
308                    dcache_latency += dcachePort.sendAtomic(&pkt);
309            }
310            dcache_access = true;
311
312            assert(!pkt.isError());
313
314            if (req->isLLSC()) {
315                TheISA::handleLockedRead(thread, req);
316            }
317        }
318
319        //If there's a fault, return it
320        if (fault != NoFault) {
321            if (req->isPrefetch()) {
322                return NoFault;
323            } else {
324                return fault;
325            }
326        }
327
328        //If we don't need to access a second cache line, stop now.
329        if (secondAddr <= addr)
330        {
331            if (req->isLocked() && fault == NoFault) {
332                assert(!locked);
333                locked = true;
334            }
335            return fault;
336        }
337
338        /*
339         * Set up for accessing the second cache line.
340         */
341
342        //Move the pointer we're reading into to the correct location.
343        data += size;
344        //Adjust the size to get the remaining bytes.
345        size = addr + fullSize - secondAddr;
346        //And access the right address.
347        addr = secondAddr;
348    }
349}
350
351
352Fault
353AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
354                          Addr addr, unsigned flags, uint64_t *res)
355{
356    // use the CPU's statically allocated write request and packet objects
357    Request *req = &data_write_req;
358
359    if (traceData) {
360        traceData->setAddr(addr);
361    }
362
363    //The block size of our peer.
364    unsigned blockSize = dcachePort.peerBlockSize();
365    //The size of the data we're trying to read.
366    int fullSize = size;
367
368    //The address of the second part of this access if it needs to be split
369    //across a cache line boundary.
370    Addr secondAddr = roundDown(addr + size - 1, blockSize);
371
372    if(secondAddr > addr)
373        size = secondAddr - addr;
374
375    dcache_latency = 0;
376
377    while(1) {
378        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
379
380        // translate to physical address
381        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
382
383        // Now do the access.
384        if (fault == NoFault) {
385            MemCmd cmd = MemCmd::WriteReq; // default
386            bool do_access = true;  // flag to suppress cache access
387
388            if (req->isLLSC()) {
389                cmd = MemCmd::StoreCondReq;
390                do_access = TheISA::handleLockedWrite(thread, req);
391            } else if (req->isSwap()) {
392                cmd = MemCmd::SwapReq;
393                if (req->isCondSwap()) {
394                    assert(res);
395                    req->setExtraData(*res);
396                }
397            }
398
399            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
400                Packet pkt = Packet(req, cmd);
401                pkt.dataStatic(data);
402
403                if (req->isMmappedIpr()) {
404                    dcache_latency +=
405                        TheISA::handleIprWrite(thread->getTC(), &pkt);
406                } else {
407                    if (fastmem && system->isMemAddr(pkt.getAddr()))
408                        system->getPhysMem().access(&pkt);
409                    else
410                        dcache_latency += dcachePort.sendAtomic(&pkt);
411                }
412                dcache_access = true;
413                assert(!pkt.isError());
414
415                if (req->isSwap()) {
416                    assert(res);
417                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
418                }
419            }
420
421            if (res && !req->isSwap()) {
422                *res = req->getExtraData();
423            }
424        }
425
426        //If there's a fault or we don't need to access a second cache line,
427        //stop now.
428        if (fault != NoFault || secondAddr <= addr)
429        {
430            if (req->isLocked() && fault == NoFault) {
431                assert(locked);
432                locked = false;
433            }
434            if (fault != NoFault && req->isPrefetch()) {
435                return NoFault;
436            } else {
437                return fault;
438            }
439        }
440
441        /*
442         * Set up for accessing the second cache line.
443         */
444
445        //Move the pointer we're reading into to the correct location.
446        data += size;
447        //Adjust the size to get the remaining bytes.
448        size = addr + fullSize - secondAddr;
449        //And access the right address.
450        addr = secondAddr;
451    }
452}
453
454
455void
456AtomicSimpleCPU::tick()
457{
458    DPRINTF(SimpleCPU, "Tick\n");
459
460    Tick latency = 0;
461
462    for (int i = 0; i < width || locked; ++i) {
463        numCycles++;
464
465        if (!curStaticInst || !curStaticInst->isDelayedCommit())
466            checkForInterrupts();
467
468        checkPcEventQueue();
469        // We must have just got suspended by a PC event
470        if (_status == Idle) {
471            tryCompleteDrain();
472            return;
473        }
474
475        Fault fault = NoFault;
476
477        TheISA::PCState pcState = thread->pcState();
478
479        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
480                           !curMacroStaticInst;
481        if (needToFetch) {
482            setupFetchRequest(&ifetch_req);
483            fault = thread->itb->translateAtomic(&ifetch_req, tc,
484                                                 BaseTLB::Execute);
485        }
486
487        if (fault == NoFault) {
488            Tick icache_latency = 0;
489            bool icache_access = false;
490            dcache_access = false; // assume no dcache access
491
492            if (needToFetch) {
493                // This is commented out because the decoder would act like
494                // a tiny cache otherwise. It wouldn't be flushed when needed
495                // like the I cache. It should be flushed, and when that works
496                // this code should be uncommented.
497                //Fetch more instruction memory if necessary
498                //if(decoder.needMoreBytes())
499                //{
500                    icache_access = true;
501                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
502                    ifetch_pkt.dataStatic(&inst);
503
504                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
505                        system->getPhysMem().access(&ifetch_pkt);
506                    else
507                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
508
509                    assert(!ifetch_pkt.isError());
510
511                    // ifetch_req is initialized to read the instruction directly
512                    // into the CPU object's inst field.
513                //}
514            }
515
516            preExecute();
517
518            if (curStaticInst) {
519                fault = curStaticInst->execute(this, traceData);
520
521                // keep an instruction count
522                if (fault == NoFault)
523                    countInst();
524                else if (traceData && !DTRACE(ExecFaulting)) {
525                    delete traceData;
526                    traceData = NULL;
527                }
528
529                postExecute();
530            }
531
532            // @todo remove me after debugging with legion done
533            if (curStaticInst && (!curStaticInst->isMicroop() ||
534                        curStaticInst->isFirstMicroop()))
535                instCnt++;
536
537            Tick stall_ticks = 0;
538            if (simulate_inst_stalls && icache_access)
539                stall_ticks += icache_latency;
540
541            if (simulate_data_stalls && dcache_access)
542                stall_ticks += dcache_latency;
543
544            if (stall_ticks) {
545                // the atomic cpu does its accounting in ticks, so
546                // keep counting in ticks but round to the clock
547                // period
548                latency += divCeil(stall_ticks, clockPeriod()) *
549                    clockPeriod();
550            }
551
552        }
553        if(fault != NoFault || !stayAtPC)
554            advancePC(fault);
555    }
556
557    if (tryCompleteDrain())
558        return;
559
560    // instruction takes at least one cycle
561    if (latency < clockPeriod())
562        latency = clockPeriod();
563
564    if (_status != Idle)
565        schedule(tickEvent, curTick() + latency);
566}
567
568
569void
570AtomicSimpleCPU::printAddr(Addr a)
571{
572    dcachePort.printAddr(a);
573}
574
575
576////////////////////////////////////////////////////////////////////////
577//
578//  AtomicSimpleCPU Simulation Object
579//
580AtomicSimpleCPU *
581AtomicSimpleCPUParams::create()
582{
583    numThreads = 1;
584    if (!FullSystem && workload.size() != 1)
585        panic("only one workload allowed");
586    return new AtomicSimpleCPU(this);
587}
588