atomic.cc revision 9180
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2002-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Steve Reinhardt
41 */
42
43#include "arch/locked_mem.hh"
44#include "arch/mmapped_ipr.hh"
45#include "arch/utility.hh"
46#include "base/bigint.hh"
47#include "config/the_isa.hh"
48#include "cpu/simple/atomic.hh"
49#include "cpu/exetrace.hh"
50#include "debug/ExecFaulting.hh"
51#include "debug/SimpleCPU.hh"
52#include "mem/packet.hh"
53#include "mem/packet_access.hh"
54#include "mem/physical.hh"
55#include "params/AtomicSimpleCPU.hh"
56#include "sim/faults.hh"
57#include "sim/system.hh"
58#include "sim/full_system.hh"
59
60using namespace std;
61using namespace TheISA;
62
63AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
64    : Event(CPU_Tick_Pri), cpu(c)
65{
66}
67
68
69void
70AtomicSimpleCPU::TickEvent::process()
71{
72    cpu->tick();
73}
74
75const char *
76AtomicSimpleCPU::TickEvent::description() const
77{
78    return "AtomicSimpleCPU tick";
79}
80
81void
82AtomicSimpleCPU::init()
83{
84    BaseCPU::init();
85
86    // Initialise the ThreadContext's memory proxies
87    tcBase()->initMemProxies(tcBase());
88
89    if (FullSystem && !params()->defer_registration) {
90        ThreadID size = threadContexts.size();
91        for (ThreadID i = 0; i < size; ++i) {
92            ThreadContext *tc = threadContexts[i];
93            // initialize CPU, including PC
94            TheISA::initCPU(tc, tc->contextId());
95        }
96    }
97
98    // Atomic doesn't do MT right now, so contextId == threadId
99    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
100    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
101    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102}
103
104AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
105    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
106      simulate_data_stalls(p->simulate_data_stalls),
107      simulate_inst_stalls(p->simulate_inst_stalls),
108      icachePort(name() + ".icache_port", this),
109      dcachePort(name() + ".dcache_port", this),
110      fastmem(p->fastmem)
111{
112    _status = Idle;
113}
114
115
116AtomicSimpleCPU::~AtomicSimpleCPU()
117{
118    if (tickEvent.scheduled()) {
119        deschedule(tickEvent);
120    }
121}
122
123void
124AtomicSimpleCPU::serialize(ostream &os)
125{
126    SimObject::State so_state = SimObject::getState();
127    SERIALIZE_ENUM(so_state);
128    SERIALIZE_SCALAR(locked);
129    BaseSimpleCPU::serialize(os);
130    nameOut(os, csprintf("%s.tickEvent", name()));
131    tickEvent.serialize(os);
132}
133
134void
135AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
136{
137    SimObject::State so_state;
138    UNSERIALIZE_ENUM(so_state);
139    UNSERIALIZE_SCALAR(locked);
140    BaseSimpleCPU::unserialize(cp, section);
141    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
142}
143
144void
145AtomicSimpleCPU::resume()
146{
147    if (_status == Idle || _status == SwitchedOut)
148        return;
149
150    DPRINTF(SimpleCPU, "Resume\n");
151    assert(system->getMemoryMode() == Enums::atomic);
152
153    changeState(SimObject::Running);
154    if (thread->status() == ThreadContext::Active) {
155        if (!tickEvent.scheduled())
156            schedule(tickEvent, nextCycle());
157    }
158    system->totalNumInsts = 0;
159}
160
161void
162AtomicSimpleCPU::switchOut()
163{
164    assert(_status == Running || _status == Idle);
165    _status = SwitchedOut;
166
167    tickEvent.squash();
168}
169
170
171void
172AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
173{
174    BaseCPU::takeOverFrom(oldCPU);
175
176    assert(!tickEvent.scheduled());
177
178    // if any of this CPU's ThreadContexts are active, mark the CPU as
179    // running and schedule its tick event.
180    ThreadID size = threadContexts.size();
181    for (ThreadID i = 0; i < size; ++i) {
182        ThreadContext *tc = threadContexts[i];
183        if (tc->status() == ThreadContext::Active && _status != Running) {
184            _status = Running;
185            schedule(tickEvent, nextCycle());
186            break;
187        }
188    }
189    if (_status != Running) {
190        _status = Idle;
191    }
192    assert(threadContexts.size() == 1);
193    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
194    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
195    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
196}
197
198
199void
200AtomicSimpleCPU::activateContext(ThreadID thread_num, Cycles delay)
201{
202    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
203
204    assert(thread_num == 0);
205    assert(thread);
206
207    assert(_status == Idle);
208    assert(!tickEvent.scheduled());
209
210    notIdleFraction++;
211    numCycles += ticksToCycles(thread->lastActivate - thread->lastSuspend);
212
213    //Make sure ticks are still on multiples of cycles
214    schedule(tickEvent, clockEdge(delay));
215    _status = Running;
216}
217
218
219void
220AtomicSimpleCPU::suspendContext(ThreadID thread_num)
221{
222    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
223
224    assert(thread_num == 0);
225    assert(thread);
226
227    if (_status == Idle)
228        return;
229
230    assert(_status == Running);
231
232    // tick event may not be scheduled if this gets called from inside
233    // an instruction's execution, e.g. "quiesce"
234    if (tickEvent.scheduled())
235        deschedule(tickEvent);
236
237    notIdleFraction--;
238    _status = Idle;
239}
240
241
242Fault
243AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
244                         unsigned size, unsigned flags)
245{
246    // use the CPU's statically allocated read request and packet objects
247    Request *req = &data_read_req;
248
249    if (traceData) {
250        traceData->setAddr(addr);
251    }
252
253    //The block size of our peer.
254    unsigned blockSize = dcachePort.peerBlockSize();
255    //The size of the data we're trying to read.
256    int fullSize = size;
257
258    //The address of the second part of this access if it needs to be split
259    //across a cache line boundary.
260    Addr secondAddr = roundDown(addr + size - 1, blockSize);
261
262    if (secondAddr > addr)
263        size = secondAddr - addr;
264
265    dcache_latency = 0;
266
267    while (1) {
268        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
269
270        // translate to physical address
271        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
272
273        // Now do the access.
274        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
275            Packet pkt = Packet(req,
276                                req->isLLSC() ? MemCmd::LoadLockedReq :
277                                MemCmd::ReadReq);
278            pkt.dataStatic(data);
279
280            if (req->isMmappedIpr())
281                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
282            else {
283                if (fastmem && system->isMemAddr(pkt.getAddr()))
284                    system->getPhysMem().access(&pkt);
285                else
286                    dcache_latency += dcachePort.sendAtomic(&pkt);
287            }
288            dcache_access = true;
289
290            assert(!pkt.isError());
291
292            if (req->isLLSC()) {
293                TheISA::handleLockedRead(thread, req);
294            }
295        }
296
297        //If there's a fault, return it
298        if (fault != NoFault) {
299            if (req->isPrefetch()) {
300                return NoFault;
301            } else {
302                return fault;
303            }
304        }
305
306        //If we don't need to access a second cache line, stop now.
307        if (secondAddr <= addr)
308        {
309            if (req->isLocked() && fault == NoFault) {
310                assert(!locked);
311                locked = true;
312            }
313            return fault;
314        }
315
316        /*
317         * Set up for accessing the second cache line.
318         */
319
320        //Move the pointer we're reading into to the correct location.
321        data += size;
322        //Adjust the size to get the remaining bytes.
323        size = addr + fullSize - secondAddr;
324        //And access the right address.
325        addr = secondAddr;
326    }
327}
328
329
330Fault
331AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
332                          Addr addr, unsigned flags, uint64_t *res)
333{
334    // use the CPU's statically allocated write request and packet objects
335    Request *req = &data_write_req;
336
337    if (traceData) {
338        traceData->setAddr(addr);
339    }
340
341    //The block size of our peer.
342    unsigned blockSize = dcachePort.peerBlockSize();
343    //The size of the data we're trying to read.
344    int fullSize = size;
345
346    //The address of the second part of this access if it needs to be split
347    //across a cache line boundary.
348    Addr secondAddr = roundDown(addr + size - 1, blockSize);
349
350    if(secondAddr > addr)
351        size = secondAddr - addr;
352
353    dcache_latency = 0;
354
355    while(1) {
356        req->setVirt(0, addr, size, flags, dataMasterId(), thread->pcState().instAddr());
357
358        // translate to physical address
359        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
360
361        // Now do the access.
362        if (fault == NoFault) {
363            MemCmd cmd = MemCmd::WriteReq; // default
364            bool do_access = true;  // flag to suppress cache access
365
366            if (req->isLLSC()) {
367                cmd = MemCmd::StoreCondReq;
368                do_access = TheISA::handleLockedWrite(thread, req);
369            } else if (req->isSwap()) {
370                cmd = MemCmd::SwapReq;
371                if (req->isCondSwap()) {
372                    assert(res);
373                    req->setExtraData(*res);
374                }
375            }
376
377            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
378                Packet pkt = Packet(req, cmd);
379                pkt.dataStatic(data);
380
381                if (req->isMmappedIpr()) {
382                    dcache_latency +=
383                        TheISA::handleIprWrite(thread->getTC(), &pkt);
384                } else {
385                    if (fastmem && system->isMemAddr(pkt.getAddr()))
386                        system->getPhysMem().access(&pkt);
387                    else
388                        dcache_latency += dcachePort.sendAtomic(&pkt);
389                }
390                dcache_access = true;
391                assert(!pkt.isError());
392
393                if (req->isSwap()) {
394                    assert(res);
395                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
396                }
397            }
398
399            if (res && !req->isSwap()) {
400                *res = req->getExtraData();
401            }
402        }
403
404        //If there's a fault or we don't need to access a second cache line,
405        //stop now.
406        if (fault != NoFault || secondAddr <= addr)
407        {
408            if (req->isLocked() && fault == NoFault) {
409                assert(locked);
410                locked = false;
411            }
412            if (fault != NoFault && req->isPrefetch()) {
413                return NoFault;
414            } else {
415                return fault;
416            }
417        }
418
419        /*
420         * Set up for accessing the second cache line.
421         */
422
423        //Move the pointer we're reading into to the correct location.
424        data += size;
425        //Adjust the size to get the remaining bytes.
426        size = addr + fullSize - secondAddr;
427        //And access the right address.
428        addr = secondAddr;
429    }
430}
431
432
433void
434AtomicSimpleCPU::tick()
435{
436    DPRINTF(SimpleCPU, "Tick\n");
437
438    Tick latency = 0;
439
440    for (int i = 0; i < width || locked; ++i) {
441        numCycles++;
442
443        if (!curStaticInst || !curStaticInst->isDelayedCommit())
444            checkForInterrupts();
445
446        checkPcEventQueue();
447        // We must have just got suspended by a PC event
448        if (_status == Idle)
449            return;
450
451        Fault fault = NoFault;
452
453        TheISA::PCState pcState = thread->pcState();
454
455        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
456                           !curMacroStaticInst;
457        if (needToFetch) {
458            setupFetchRequest(&ifetch_req);
459            fault = thread->itb->translateAtomic(&ifetch_req, tc,
460                                                 BaseTLB::Execute);
461        }
462
463        if (fault == NoFault) {
464            Tick icache_latency = 0;
465            bool icache_access = false;
466            dcache_access = false; // assume no dcache access
467
468            if (needToFetch) {
469                // This is commented out because the decoder would act like
470                // a tiny cache otherwise. It wouldn't be flushed when needed
471                // like the I cache. It should be flushed, and when that works
472                // this code should be uncommented.
473                //Fetch more instruction memory if necessary
474                //if(decoder.needMoreBytes())
475                //{
476                    icache_access = true;
477                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq);
478                    ifetch_pkt.dataStatic(&inst);
479
480                    if (fastmem && system->isMemAddr(ifetch_pkt.getAddr()))
481                        system->getPhysMem().access(&ifetch_pkt);
482                    else
483                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
484
485                    assert(!ifetch_pkt.isError());
486
487                    // ifetch_req is initialized to read the instruction directly
488                    // into the CPU object's inst field.
489                //}
490            }
491
492            preExecute();
493
494            if (curStaticInst) {
495                fault = curStaticInst->execute(this, traceData);
496
497                // keep an instruction count
498                if (fault == NoFault)
499                    countInst();
500                else if (traceData && !DTRACE(ExecFaulting)) {
501                    delete traceData;
502                    traceData = NULL;
503                }
504
505                postExecute();
506            }
507
508            // @todo remove me after debugging with legion done
509            if (curStaticInst && (!curStaticInst->isMicroop() ||
510                        curStaticInst->isFirstMicroop()))
511                instCnt++;
512
513            Tick stall_ticks = 0;
514            if (simulate_inst_stalls && icache_access)
515                stall_ticks += icache_latency;
516
517            if (simulate_data_stalls && dcache_access)
518                stall_ticks += dcache_latency;
519
520            if (stall_ticks) {
521                // the atomic cpu does its accounting in ticks, so
522                // keep counting in ticks but round to the clock
523                // period
524                latency += divCeil(stall_ticks, clockPeriod()) *
525                    clockPeriod();
526            }
527
528        }
529        if(fault != NoFault || !stayAtPC)
530            advancePC(fault);
531    }
532
533    // instruction takes at least one cycle
534    if (latency < clockPeriod())
535        latency = clockPeriod();
536
537    if (_status != Idle)
538        schedule(tickEvent, curTick() + latency);
539}
540
541
542void
543AtomicSimpleCPU::printAddr(Addr a)
544{
545    dcachePort.printAddr(a);
546}
547
548
549////////////////////////////////////////////////////////////////////////
550//
551//  AtomicSimpleCPU Simulation Object
552//
553AtomicSimpleCPU *
554AtomicSimpleCPUParams::create()
555{
556    numThreads = 1;
557    if (!FullSystem && workload.size() != 1)
558        panic("only one workload allowed");
559    return new AtomicSimpleCPU(this);
560}
561