atomic.cc revision 8799:dac1e33e07b0
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmapped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/simple/atomic.hh"
37#include "cpu/exetrace.hh"
38#include "debug/ExecFaulting.hh"
39#include "debug/SimpleCPU.hh"
40#include "mem/packet.hh"
41#include "mem/packet_access.hh"
42#include "params/AtomicSimpleCPU.hh"
43#include "sim/faults.hh"
44#include "sim/system.hh"
45#include "sim/full_system.hh"
46
47using namespace std;
48using namespace TheISA;
49
50AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
51    : Event(CPU_Tick_Pri), cpu(c)
52{
53}
54
55
56void
57AtomicSimpleCPU::TickEvent::process()
58{
59    cpu->tick();
60}
61
62const char *
63AtomicSimpleCPU::TickEvent::description() const
64{
65    return "AtomicSimpleCPU tick";
66}
67
68Port *
69AtomicSimpleCPU::getPort(const string &if_name, int idx)
70{
71    if (if_name == "dcache_port")
72        return &dcachePort;
73    else if (if_name == "icache_port")
74        return &icachePort;
75    else if (if_name == "physmem_port") {
76        hasPhysMemPort = true;
77        return &physmemPort;
78    }
79    else
80        panic("No Such Port\n");
81}
82
83void
84AtomicSimpleCPU::init()
85{
86    BaseCPU::init();
87    if (FullSystem) {
88        ThreadID size = threadContexts.size();
89        for (ThreadID i = 0; i < size; ++i) {
90            ThreadContext *tc = threadContexts[i];
91            // initialize CPU, including PC
92            TheISA::initCPU(tc, tc->contextId());
93        }
94    }
95
96    // Initialise the ThreadContext's memory proxies
97    tcBase()->initMemProxies(tcBase());
98
99    if (hasPhysMemPort) {
100        AddrRangeList pmAddrList = physmemPort.getPeer()->getAddrRanges();
101        physMemAddr = *pmAddrList.begin();
102    }
103    // Atomic doesn't do MT right now, so contextId == threadId
104    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
105    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
106    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
107}
108
109AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
110    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
111      simulate_data_stalls(p->simulate_data_stalls),
112      simulate_inst_stalls(p->simulate_inst_stalls),
113      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
114      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
115{
116    _status = Idle;
117}
118
119
120AtomicSimpleCPU::~AtomicSimpleCPU()
121{
122    if (tickEvent.scheduled()) {
123        deschedule(tickEvent);
124    }
125}
126
127void
128AtomicSimpleCPU::serialize(ostream &os)
129{
130    SimObject::State so_state = SimObject::getState();
131    SERIALIZE_ENUM(so_state);
132    SERIALIZE_SCALAR(locked);
133    BaseSimpleCPU::serialize(os);
134    nameOut(os, csprintf("%s.tickEvent", name()));
135    tickEvent.serialize(os);
136}
137
138void
139AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
140{
141    SimObject::State so_state;
142    UNSERIALIZE_ENUM(so_state);
143    UNSERIALIZE_SCALAR(locked);
144    BaseSimpleCPU::unserialize(cp, section);
145    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
146}
147
148void
149AtomicSimpleCPU::resume()
150{
151    if (_status == Idle || _status == SwitchedOut)
152        return;
153
154    DPRINTF(SimpleCPU, "Resume\n");
155    assert(system->getMemoryMode() == Enums::atomic);
156
157    changeState(SimObject::Running);
158    if (thread->status() == ThreadContext::Active) {
159        if (!tickEvent.scheduled())
160            schedule(tickEvent, nextCycle());
161    }
162    system->totalNumInsts = 0;
163}
164
165void
166AtomicSimpleCPU::switchOut()
167{
168    assert(_status == Running || _status == Idle);
169    _status = SwitchedOut;
170
171    tickEvent.squash();
172}
173
174
175void
176AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
177{
178    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
179
180    assert(!tickEvent.scheduled());
181
182    // if any of this CPU's ThreadContexts are active, mark the CPU as
183    // running and schedule its tick event.
184    ThreadID size = threadContexts.size();
185    for (ThreadID i = 0; i < size; ++i) {
186        ThreadContext *tc = threadContexts[i];
187        if (tc->status() == ThreadContext::Active && _status != Running) {
188            _status = Running;
189            schedule(tickEvent, nextCycle());
190            break;
191        }
192    }
193    if (_status != Running) {
194        _status = Idle;
195    }
196    assert(threadContexts.size() == 1);
197    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
198    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
199    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
200}
201
202
203void
204AtomicSimpleCPU::activateContext(int thread_num, int delay)
205{
206    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
207
208    assert(thread_num == 0);
209    assert(thread);
210
211    assert(_status == Idle);
212    assert(!tickEvent.scheduled());
213
214    notIdleFraction++;
215    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
216
217    //Make sure ticks are still on multiples of cycles
218    schedule(tickEvent, nextCycle(curTick() + ticks(delay)));
219    _status = Running;
220}
221
222
223void
224AtomicSimpleCPU::suspendContext(int thread_num)
225{
226    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
227
228    assert(thread_num == 0);
229    assert(thread);
230
231    if (_status == Idle)
232        return;
233
234    assert(_status == Running);
235
236    // tick event may not be scheduled if this gets called from inside
237    // an instruction's execution, e.g. "quiesce"
238    if (tickEvent.scheduled())
239        deschedule(tickEvent);
240
241    notIdleFraction--;
242    _status = Idle;
243}
244
245
246Fault
247AtomicSimpleCPU::readMem(Addr addr, uint8_t * data,
248                         unsigned size, unsigned flags)
249{
250    // use the CPU's statically allocated read request and packet objects
251    Request *req = &data_read_req;
252
253    if (traceData) {
254        traceData->setAddr(addr);
255    }
256
257    //The block size of our peer.
258    unsigned blockSize = dcachePort.peerBlockSize();
259    //The size of the data we're trying to read.
260    int fullSize = size;
261
262    //The address of the second part of this access if it needs to be split
263    //across a cache line boundary.
264    Addr secondAddr = roundDown(addr + size - 1, blockSize);
265
266    if (secondAddr > addr)
267        size = secondAddr - addr;
268
269    dcache_latency = 0;
270
271    while (1) {
272        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
273
274        // translate to physical address
275        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
276
277        // Now do the access.
278        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
279            Packet pkt = Packet(req,
280                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
281                    Packet::Broadcast);
282            pkt.dataStatic(data);
283
284            if (req->isMmappedIpr())
285                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
286            else {
287                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
288                    dcache_latency += physmemPort.sendAtomic(&pkt);
289                else
290                    dcache_latency += dcachePort.sendAtomic(&pkt);
291            }
292            dcache_access = true;
293
294            assert(!pkt.isError());
295
296            if (req->isLLSC()) {
297                TheISA::handleLockedRead(thread, req);
298            }
299        }
300
301        //If there's a fault, return it
302        if (fault != NoFault) {
303            if (req->isPrefetch()) {
304                return NoFault;
305            } else {
306                return fault;
307            }
308        }
309
310        //If we don't need to access a second cache line, stop now.
311        if (secondAddr <= addr)
312        {
313            if (req->isLocked() && fault == NoFault) {
314                assert(!locked);
315                locked = true;
316            }
317            return fault;
318        }
319
320        /*
321         * Set up for accessing the second cache line.
322         */
323
324        //Move the pointer we're reading into to the correct location.
325        data += size;
326        //Adjust the size to get the remaining bytes.
327        size = addr + fullSize - secondAddr;
328        //And access the right address.
329        addr = secondAddr;
330    }
331}
332
333
334Fault
335AtomicSimpleCPU::writeMem(uint8_t *data, unsigned size,
336                          Addr addr, unsigned flags, uint64_t *res)
337{
338    // use the CPU's statically allocated write request and packet objects
339    Request *req = &data_write_req;
340
341    if (traceData) {
342        traceData->setAddr(addr);
343    }
344
345    //The block size of our peer.
346    unsigned blockSize = dcachePort.peerBlockSize();
347    //The size of the data we're trying to read.
348    int fullSize = size;
349
350    //The address of the second part of this access if it needs to be split
351    //across a cache line boundary.
352    Addr secondAddr = roundDown(addr + size - 1, blockSize);
353
354    if(secondAddr > addr)
355        size = secondAddr - addr;
356
357    dcache_latency = 0;
358
359    while(1) {
360        req->setVirt(0, addr, size, flags, thread->pcState().instAddr());
361
362        // translate to physical address
363        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
364
365        // Now do the access.
366        if (fault == NoFault) {
367            MemCmd cmd = MemCmd::WriteReq; // default
368            bool do_access = true;  // flag to suppress cache access
369
370            if (req->isLLSC()) {
371                cmd = MemCmd::StoreCondReq;
372                do_access = TheISA::handleLockedWrite(thread, req);
373            } else if (req->isSwap()) {
374                cmd = MemCmd::SwapReq;
375                if (req->isCondSwap()) {
376                    assert(res);
377                    req->setExtraData(*res);
378                }
379            }
380
381            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
382                Packet pkt = Packet(req, cmd, Packet::Broadcast);
383                pkt.dataStatic(data);
384
385                if (req->isMmappedIpr()) {
386                    dcache_latency +=
387                        TheISA::handleIprWrite(thread->getTC(), &pkt);
388                } else {
389                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
390                        dcache_latency += physmemPort.sendAtomic(&pkt);
391                    else
392                        dcache_latency += dcachePort.sendAtomic(&pkt);
393                }
394                dcache_access = true;
395                assert(!pkt.isError());
396
397                if (req->isSwap()) {
398                    assert(res);
399                    memcpy(res, pkt.getPtr<uint8_t>(), fullSize);
400                }
401            }
402
403            if (res && !req->isSwap()) {
404                *res = req->getExtraData();
405            }
406        }
407
408        //If there's a fault or we don't need to access a second cache line,
409        //stop now.
410        if (fault != NoFault || secondAddr <= addr)
411        {
412            if (req->isLocked() && fault == NoFault) {
413                assert(locked);
414                locked = false;
415            }
416            if (fault != NoFault && req->isPrefetch()) {
417                return NoFault;
418            } else {
419                return fault;
420            }
421        }
422
423        /*
424         * Set up for accessing the second cache line.
425         */
426
427        //Move the pointer we're reading into to the correct location.
428        data += size;
429        //Adjust the size to get the remaining bytes.
430        size = addr + fullSize - secondAddr;
431        //And access the right address.
432        addr = secondAddr;
433    }
434}
435
436
437void
438AtomicSimpleCPU::tick()
439{
440    DPRINTF(SimpleCPU, "Tick\n");
441
442    Tick latency = 0;
443
444    for (int i = 0; i < width || locked; ++i) {
445        numCycles++;
446
447        if (!curStaticInst || !curStaticInst->isDelayedCommit())
448            checkForInterrupts();
449
450        checkPcEventQueue();
451        // We must have just got suspended by a PC event
452        if (_status == Idle)
453            return;
454
455        Fault fault = NoFault;
456
457        TheISA::PCState pcState = thread->pcState();
458
459        bool needToFetch = !isRomMicroPC(pcState.microPC()) &&
460                           !curMacroStaticInst;
461        if (needToFetch) {
462            setupFetchRequest(&ifetch_req);
463            fault = thread->itb->translateAtomic(&ifetch_req, tc,
464                                                 BaseTLB::Execute);
465        }
466
467        if (fault == NoFault) {
468            Tick icache_latency = 0;
469            bool icache_access = false;
470            dcache_access = false; // assume no dcache access
471
472            if (needToFetch) {
473                // This is commented out because the predecoder would act like
474                // a tiny cache otherwise. It wouldn't be flushed when needed
475                // like the I cache. It should be flushed, and when that works
476                // this code should be uncommented.
477                //Fetch more instruction memory if necessary
478                //if(predecoder.needMoreBytes())
479                //{
480                    icache_access = true;
481                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
482                                               Packet::Broadcast);
483                    ifetch_pkt.dataStatic(&inst);
484
485                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
486                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
487                    else
488                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
489
490                    assert(!ifetch_pkt.isError());
491
492                    // ifetch_req is initialized to read the instruction directly
493                    // into the CPU object's inst field.
494                //}
495            }
496
497            preExecute();
498
499            if (curStaticInst) {
500                fault = curStaticInst->execute(this, traceData);
501
502                // keep an instruction count
503                if (fault == NoFault)
504                    countInst();
505                else if (traceData && !DTRACE(ExecFaulting)) {
506                    delete traceData;
507                    traceData = NULL;
508                }
509
510                postExecute();
511            }
512
513            // @todo remove me after debugging with legion done
514            if (curStaticInst && (!curStaticInst->isMicroop() ||
515                        curStaticInst->isFirstMicroop()))
516                instCnt++;
517
518            Tick stall_ticks = 0;
519            if (simulate_inst_stalls && icache_access)
520                stall_ticks += icache_latency;
521
522            if (simulate_data_stalls && dcache_access)
523                stall_ticks += dcache_latency;
524
525            if (stall_ticks) {
526                Tick stall_cycles = stall_ticks / ticks(1);
527                Tick aligned_stall_ticks = ticks(stall_cycles);
528
529                if (aligned_stall_ticks < stall_ticks)
530                    aligned_stall_ticks += 1;
531
532                latency += aligned_stall_ticks;
533            }
534
535        }
536        if(fault != NoFault || !stayAtPC)
537            advancePC(fault);
538    }
539
540    // instruction takes at least one cycle
541    if (latency < ticks(1))
542        latency = ticks(1);
543
544    if (_status != Idle)
545        schedule(tickEvent, curTick() + latency);
546}
547
548
549void
550AtomicSimpleCPU::printAddr(Addr a)
551{
552    dcachePort.printAddr(a);
553}
554
555
556////////////////////////////////////////////////////////////////////////
557//
558//  AtomicSimpleCPU Simulation Object
559//
560AtomicSimpleCPU *
561AtomicSimpleCPUParams::create()
562{
563    numThreads = 1;
564    if (!FullSystem && workload.size() != 1)
565        panic("only one workload allowed");
566    return new AtomicSimpleCPU(this);
567}
568