atomic.cc revision 6775
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "config/the_isa.hh"
36#include "cpu/exetrace.hh"
37#include "cpu/simple/atomic.hh"
38#include "mem/packet.hh"
39#include "mem/packet_access.hh"
40#include "params/AtomicSimpleCPU.hh"
41#include "sim/system.hh"
42
43using namespace std;
44using namespace TheISA;
45
46AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
47    : Event(CPU_Tick_Pri), cpu(c)
48{
49}
50
51
52void
53AtomicSimpleCPU::TickEvent::process()
54{
55    cpu->tick();
56}
57
58const char *
59AtomicSimpleCPU::TickEvent::description() const
60{
61    return "AtomicSimpleCPU tick";
62}
63
64Port *
65AtomicSimpleCPU::getPort(const string &if_name, int idx)
66{
67    if (if_name == "dcache_port")
68        return &dcachePort;
69    else if (if_name == "icache_port")
70        return &icachePort;
71    else if (if_name == "physmem_port") {
72        hasPhysMemPort = true;
73        return &physmemPort;
74    }
75    else
76        panic("No Such Port\n");
77}
78
79void
80AtomicSimpleCPU::init()
81{
82    BaseCPU::init();
83#if FULL_SYSTEM
84    ThreadID size = threadContexts.size();
85    for (ThreadID i = 0; i < size; ++i) {
86        ThreadContext *tc = threadContexts[i];
87
88        // initialize CPU, including PC
89        TheISA::initCPU(tc, tc->contextId());
90    }
91#endif
92    if (hasPhysMemPort) {
93        bool snoop = false;
94        AddrRangeList pmAddrList;
95        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
96        physMemAddr = *pmAddrList.begin();
97    }
98    // Atomic doesn't do MT right now, so contextId == threadId
99    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
100    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
101    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
102}
103
104bool
105AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
106{
107    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
108    return true;
109}
110
111Tick
112AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
113{
114    //Snooping a coherence request, just return
115    return 0;
116}
117
118void
119AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
120{
121    //No internal storage to update, just return
122    return;
123}
124
125void
126AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
127{
128    if (status == RangeChange) {
129        if (!snoopRangeSent) {
130            snoopRangeSent = true;
131            sendStatusChange(Port::RangeChange);
132        }
133        return;
134    }
135
136    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
137}
138
139void
140AtomicSimpleCPU::CpuPort::recvRetry()
141{
142    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
143}
144
145void
146AtomicSimpleCPU::DcachePort::setPeer(Port *port)
147{
148    Port::setPeer(port);
149
150#if FULL_SYSTEM
151    // Update the ThreadContext's memory ports (Functional/Virtual
152    // Ports)
153    cpu->tcBase()->connectMemPorts(cpu->tcBase());
154#endif
155}
156
157AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
158    : BaseSimpleCPU(p), tickEvent(this), width(p->width), locked(false),
159      simulate_data_stalls(p->simulate_data_stalls),
160      simulate_inst_stalls(p->simulate_inst_stalls),
161      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
162      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
163{
164    _status = Idle;
165
166    icachePort.snoopRangeSent = false;
167    dcachePort.snoopRangeSent = false;
168
169}
170
171
172AtomicSimpleCPU::~AtomicSimpleCPU()
173{
174    if (tickEvent.scheduled()) {
175        deschedule(tickEvent);
176    }
177}
178
179void
180AtomicSimpleCPU::serialize(ostream &os)
181{
182    SimObject::State so_state = SimObject::getState();
183    SERIALIZE_ENUM(so_state);
184    SERIALIZE_SCALAR(locked);
185    BaseSimpleCPU::serialize(os);
186    nameOut(os, csprintf("%s.tickEvent", name()));
187    tickEvent.serialize(os);
188}
189
190void
191AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
192{
193    SimObject::State so_state;
194    UNSERIALIZE_ENUM(so_state);
195    UNSERIALIZE_SCALAR(locked);
196    BaseSimpleCPU::unserialize(cp, section);
197    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
198}
199
200void
201AtomicSimpleCPU::resume()
202{
203    if (_status == Idle || _status == SwitchedOut)
204        return;
205
206    DPRINTF(SimpleCPU, "Resume\n");
207    assert(system->getMemoryMode() == Enums::atomic);
208
209    changeState(SimObject::Running);
210    if (thread->status() == ThreadContext::Active) {
211        if (!tickEvent.scheduled())
212            schedule(tickEvent, nextCycle());
213    }
214}
215
216void
217AtomicSimpleCPU::switchOut()
218{
219    assert(_status == Running || _status == Idle);
220    _status = SwitchedOut;
221
222    tickEvent.squash();
223}
224
225
226void
227AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
228{
229    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
230
231    assert(!tickEvent.scheduled());
232
233    // if any of this CPU's ThreadContexts are active, mark the CPU as
234    // running and schedule its tick event.
235    ThreadID size = threadContexts.size();
236    for (ThreadID i = 0; i < size; ++i) {
237        ThreadContext *tc = threadContexts[i];
238        if (tc->status() == ThreadContext::Active && _status != Running) {
239            _status = Running;
240            schedule(tickEvent, nextCycle());
241            break;
242        }
243    }
244    if (_status != Running) {
245        _status = Idle;
246    }
247    assert(threadContexts.size() == 1);
248    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
249    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
250    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
251}
252
253
254void
255AtomicSimpleCPU::activateContext(int thread_num, int delay)
256{
257    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
258
259    assert(thread_num == 0);
260    assert(thread);
261
262    assert(_status == Idle);
263    assert(!tickEvent.scheduled());
264
265    notIdleFraction++;
266    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
267
268    //Make sure ticks are still on multiples of cycles
269    schedule(tickEvent, nextCycle(curTick + ticks(delay)));
270    _status = Running;
271}
272
273
274void
275AtomicSimpleCPU::suspendContext(int thread_num)
276{
277    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
278
279    assert(thread_num == 0);
280    assert(thread);
281
282    if (_status == Idle)
283        return;
284
285    assert(_status == Running);
286
287    // tick event may not be scheduled if this gets called from inside
288    // an instruction's execution, e.g. "quiesce"
289    if (tickEvent.scheduled())
290        deschedule(tickEvent);
291
292    notIdleFraction--;
293    _status = Idle;
294}
295
296
297template <class T>
298Fault
299AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
300{
301    // use the CPU's statically allocated read request and packet objects
302    Request *req = &data_read_req;
303
304    if (traceData) {
305        traceData->setAddr(addr);
306    }
307
308    //The block size of our peer.
309    unsigned blockSize = dcachePort.peerBlockSize();
310    //The size of the data we're trying to read.
311    int dataSize = sizeof(T);
312
313    uint8_t * dataPtr = (uint8_t *)&data;
314
315    //The address of the second part of this access if it needs to be split
316    //across a cache line boundary.
317    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
318
319    if(secondAddr > addr)
320        dataSize = secondAddr - addr;
321
322    dcache_latency = 0;
323
324    while(1) {
325        req->setVirt(0, addr, dataSize, flags, thread->readPC());
326
327        // translate to physical address
328        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
329
330        // Now do the access.
331        if (fault == NoFault && !req->getFlags().isSet(Request::NO_ACCESS)) {
332            Packet pkt = Packet(req,
333                    req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
334                    Packet::Broadcast);
335            pkt.dataStatic(dataPtr);
336
337            if (req->isMmapedIpr())
338                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
339            else {
340                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
341                    dcache_latency += physmemPort.sendAtomic(&pkt);
342                else
343                    dcache_latency += dcachePort.sendAtomic(&pkt);
344            }
345            dcache_access = true;
346
347            assert(!pkt.isError());
348
349            if (req->isLLSC()) {
350                TheISA::handleLockedRead(thread, req);
351            }
352        }
353
354        // This will need a new way to tell if it has a dcache attached.
355        if (req->isUncacheable())
356            recordEvent("Uncached Read");
357
358        //If there's a fault, return it
359        if (fault != NoFault) {
360            if (req->isPrefetch()) {
361                return NoFault;
362            } else {
363                return fault;
364            }
365        }
366
367        //If we don't need to access a second cache line, stop now.
368        if (secondAddr <= addr)
369        {
370            data = gtoh(data);
371            if (traceData) {
372                traceData->setData(data);
373            }
374            if (req->isLocked() && fault == NoFault) {
375                assert(!locked);
376                locked = true;
377            }
378            return fault;
379        }
380
381        /*
382         * Set up for accessing the second cache line.
383         */
384
385        //Move the pointer we're reading into to the correct location.
386        dataPtr += dataSize;
387        //Adjust the size to get the remaining bytes.
388        dataSize = addr + sizeof(T) - secondAddr;
389        //And access the right address.
390        addr = secondAddr;
391    }
392}
393
394#ifndef DOXYGEN_SHOULD_SKIP_THIS
395
396template
397Fault
398AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
399
400template
401Fault
402AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
403
404template
405Fault
406AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
407
408template
409Fault
410AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
411
412template
413Fault
414AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
415
416template
417Fault
418AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
419
420#endif //DOXYGEN_SHOULD_SKIP_THIS
421
422template<>
423Fault
424AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
425{
426    return read(addr, *(uint64_t*)&data, flags);
427}
428
429template<>
430Fault
431AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
432{
433    return read(addr, *(uint32_t*)&data, flags);
434}
435
436
437template<>
438Fault
439AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
440{
441    return read(addr, (uint32_t&)data, flags);
442}
443
444
445template <class T>
446Fault
447AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
448{
449    // use the CPU's statically allocated write request and packet objects
450    Request *req = &data_write_req;
451
452    if (traceData) {
453        traceData->setAddr(addr);
454    }
455
456    //The block size of our peer.
457    unsigned blockSize = dcachePort.peerBlockSize();
458    //The size of the data we're trying to read.
459    int dataSize = sizeof(T);
460
461    uint8_t * dataPtr = (uint8_t *)&data;
462
463    //The address of the second part of this access if it needs to be split
464    //across a cache line boundary.
465    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
466
467    if(secondAddr > addr)
468        dataSize = secondAddr - addr;
469
470    dcache_latency = 0;
471
472    while(1) {
473        req->setVirt(0, addr, dataSize, flags, thread->readPC());
474
475        // translate to physical address
476        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
477
478        // Now do the access.
479        if (fault == NoFault) {
480            MemCmd cmd = MemCmd::WriteReq; // default
481            bool do_access = true;  // flag to suppress cache access
482
483            if (req->isLLSC()) {
484                cmd = MemCmd::StoreCondReq;
485                do_access = TheISA::handleLockedWrite(thread, req);
486            } else if (req->isSwap()) {
487                cmd = MemCmd::SwapReq;
488                if (req->isCondSwap()) {
489                    assert(res);
490                    req->setExtraData(*res);
491                }
492            }
493
494            if (do_access && !req->getFlags().isSet(Request::NO_ACCESS)) {
495                Packet pkt = Packet(req, cmd, Packet::Broadcast);
496                pkt.dataStatic(dataPtr);
497
498                if (req->isMmapedIpr()) {
499                    dcache_latency +=
500                        TheISA::handleIprWrite(thread->getTC(), &pkt);
501                } else {
502                    //XXX This needs to be outside of the loop in order to
503                    //work properly for cache line boundary crossing
504                    //accesses in transendian simulations.
505                    data = htog(data);
506                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
507                        dcache_latency += physmemPort.sendAtomic(&pkt);
508                    else
509                        dcache_latency += dcachePort.sendAtomic(&pkt);
510                }
511                dcache_access = true;
512                assert(!pkt.isError());
513
514                if (req->isSwap()) {
515                    assert(res);
516                    *res = pkt.get<T>();
517                }
518            }
519
520            if (res && !req->isSwap()) {
521                *res = req->getExtraData();
522            }
523        }
524
525        // This will need a new way to tell if it's hooked up to a cache or not.
526        if (req->isUncacheable())
527            recordEvent("Uncached Write");
528
529        //If there's a fault or we don't need to access a second cache line,
530        //stop now.
531        if (fault != NoFault || secondAddr <= addr)
532        {
533            // If the write needs to have a fault on the access, consider
534            // calling changeStatus() and changing it to "bad addr write"
535            // or something.
536            if (traceData) {
537                traceData->setData(gtoh(data));
538            }
539            if (req->isLocked() && fault == NoFault) {
540                assert(locked);
541                locked = false;
542            }
543            if (fault != NoFault && req->isPrefetch()) {
544                return NoFault;
545            } else {
546                return fault;
547            }
548        }
549
550        /*
551         * Set up for accessing the second cache line.
552         */
553
554        //Move the pointer we're reading into to the correct location.
555        dataPtr += dataSize;
556        //Adjust the size to get the remaining bytes.
557        dataSize = addr + sizeof(T) - secondAddr;
558        //And access the right address.
559        addr = secondAddr;
560    }
561}
562
563
564#ifndef DOXYGEN_SHOULD_SKIP_THIS
565
566template
567Fault
568AtomicSimpleCPU::write(Twin32_t data, Addr addr,
569                       unsigned flags, uint64_t *res);
570
571template
572Fault
573AtomicSimpleCPU::write(Twin64_t data, Addr addr,
574                       unsigned flags, uint64_t *res);
575
576template
577Fault
578AtomicSimpleCPU::write(uint64_t data, Addr addr,
579                       unsigned flags, uint64_t *res);
580
581template
582Fault
583AtomicSimpleCPU::write(uint32_t data, Addr addr,
584                       unsigned flags, uint64_t *res);
585
586template
587Fault
588AtomicSimpleCPU::write(uint16_t data, Addr addr,
589                       unsigned flags, uint64_t *res);
590
591template
592Fault
593AtomicSimpleCPU::write(uint8_t data, Addr addr,
594                       unsigned flags, uint64_t *res);
595
596#endif //DOXYGEN_SHOULD_SKIP_THIS
597
598template<>
599Fault
600AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
601{
602    return write(*(uint64_t*)&data, addr, flags, res);
603}
604
605template<>
606Fault
607AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
608{
609    return write(*(uint32_t*)&data, addr, flags, res);
610}
611
612
613template<>
614Fault
615AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
616{
617    return write((uint32_t)data, addr, flags, res);
618}
619
620
621void
622AtomicSimpleCPU::tick()
623{
624    DPRINTF(SimpleCPU, "Tick\n");
625
626    Tick latency = 0;
627
628    for (int i = 0; i < width || locked; ++i) {
629        numCycles++;
630
631        if (!curStaticInst || !curStaticInst->isDelayedCommit())
632            checkForInterrupts();
633
634        checkPcEventQueue();
635
636        Fault fault = NoFault;
637
638        bool fromRom = isRomMicroPC(thread->readMicroPC());
639        if (!fromRom && !curMacroStaticInst) {
640            setupFetchRequest(&ifetch_req);
641            fault = thread->itb->translateAtomic(&ifetch_req, tc,
642                                                 BaseTLB::Execute);
643        }
644
645        if (fault == NoFault) {
646            Tick icache_latency = 0;
647            bool icache_access = false;
648            dcache_access = false; // assume no dcache access
649
650            if (!fromRom && !curMacroStaticInst) {
651                // This is commented out because the predecoder would act like
652                // a tiny cache otherwise. It wouldn't be flushed when needed
653                // like the I cache. It should be flushed, and when that works
654                // this code should be uncommented.
655                //Fetch more instruction memory if necessary
656                //if(predecoder.needMoreBytes())
657                //{
658                    icache_access = true;
659                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
660                                               Packet::Broadcast);
661                    ifetch_pkt.dataStatic(&inst);
662
663                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
664                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
665                    else
666                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
667
668                    assert(!ifetch_pkt.isError());
669
670                    // ifetch_req is initialized to read the instruction directly
671                    // into the CPU object's inst field.
672                //}
673            }
674
675            preExecute();
676
677            if (curStaticInst) {
678                fault = curStaticInst->execute(this, traceData);
679
680                // keep an instruction count
681                if (fault == NoFault)
682                    countInst();
683                else if (traceData) {
684                    // If there was a fault, we should trace this instruction.
685                    delete traceData;
686                    traceData = NULL;
687                }
688
689                postExecute();
690            }
691
692            // @todo remove me after debugging with legion done
693            if (curStaticInst && (!curStaticInst->isMicroop() ||
694                        curStaticInst->isFirstMicroop()))
695                instCnt++;
696
697            Tick stall_ticks = 0;
698            if (simulate_inst_stalls && icache_access)
699                stall_ticks += icache_latency;
700
701            if (simulate_data_stalls && dcache_access)
702                stall_ticks += dcache_latency;
703
704            if (stall_ticks) {
705                Tick stall_cycles = stall_ticks / ticks(1);
706                Tick aligned_stall_ticks = ticks(stall_cycles);
707
708                if (aligned_stall_ticks < stall_ticks)
709                    aligned_stall_ticks += 1;
710
711                latency += aligned_stall_ticks;
712            }
713
714        }
715        if(fault != NoFault || !stayAtPC)
716            advancePC(fault);
717    }
718
719    // instruction takes at least one cycle
720    if (latency < ticks(1))
721        latency = ticks(1);
722
723    if (_status != Idle)
724        schedule(tickEvent, curTick + latency);
725}
726
727
728void
729AtomicSimpleCPU::printAddr(Addr a)
730{
731    dcachePort.printAddr(a);
732}
733
734
735////////////////////////////////////////////////////////////////////////
736//
737//  AtomicSimpleCPU Simulation Object
738//
739AtomicSimpleCPU *
740AtomicSimpleCPUParams::create()
741{
742    numThreads = 1;
743#if !FULL_SYSTEM
744    if (workload.size() != 1)
745        panic("only one workload allowed");
746#endif
747    return new AtomicSimpleCPU(this);
748}
749