atomic.cc revision 6076:e141cc7896ce
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->contextId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96    // Atomic doesn't do MT right now, so contextId == threadId
97    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
98    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
99    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106    return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112    //Snooping a coherence request, just return
113    return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119    //No internal storage to update, just return
120    return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126    if (status == RangeChange) {
127        if (!snoopRangeSent) {
128            snoopRangeSent = true;
129            sendStatusChange(Port::RangeChange);
130        }
131        return;
132    }
133
134    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146    Port::setPeer(port);
147
148#if FULL_SYSTEM
149    // Update the ThreadContext's memory ports (Functional/Virtual
150    // Ports)
151    cpu->tcBase()->connectMemPorts(cpu->tcBase());
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
156    : BaseSimpleCPU(p), tickEvent(this), width(p->width),
157      simulate_data_stalls(p->simulate_data_stalls),
158      simulate_inst_stalls(p->simulate_inst_stalls),
159      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
160      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
161{
162    _status = Idle;
163
164    icachePort.snoopRangeSent = false;
165    dcachePort.snoopRangeSent = false;
166
167}
168
169
170AtomicSimpleCPU::~AtomicSimpleCPU()
171{
172}
173
174void
175AtomicSimpleCPU::serialize(ostream &os)
176{
177    SimObject::State so_state = SimObject::getState();
178    SERIALIZE_ENUM(so_state);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    BaseSimpleCPU::unserialize(cp, section);
190    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
191}
192
193void
194AtomicSimpleCPU::resume()
195{
196    if (_status == Idle || _status == SwitchedOut)
197        return;
198
199    DPRINTF(SimpleCPU, "Resume\n");
200    assert(system->getMemoryMode() == Enums::atomic);
201
202    changeState(SimObject::Running);
203    if (thread->status() == ThreadContext::Active) {
204        if (!tickEvent.scheduled())
205            schedule(tickEvent, nextCycle());
206    }
207}
208
209void
210AtomicSimpleCPU::switchOut()
211{
212    assert(_status == Running || _status == Idle);
213    _status = SwitchedOut;
214
215    tickEvent.squash();
216}
217
218
219void
220AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
221{
222    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
223
224    assert(!tickEvent.scheduled());
225
226    // if any of this CPU's ThreadContexts are active, mark the CPU as
227    // running and schedule its tick event.
228    for (int i = 0; i < threadContexts.size(); ++i) {
229        ThreadContext *tc = threadContexts[i];
230        if (tc->status() == ThreadContext::Active && _status != Running) {
231            _status = Running;
232            schedule(tickEvent, nextCycle());
233            break;
234        }
235    }
236    if (_status != Running) {
237        _status = Idle;
238    }
239    assert(threadContexts.size() == 1);
240    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
241    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
242    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
243}
244
245
246void
247AtomicSimpleCPU::activateContext(int thread_num, int delay)
248{
249    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    assert(_status == Idle);
255    assert(!tickEvent.scheduled());
256
257    notIdleFraction++;
258    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
259
260    //Make sure ticks are still on multiples of cycles
261    schedule(tickEvent, nextCycle(curTick + ticks(delay)));
262    _status = Running;
263}
264
265
266void
267AtomicSimpleCPU::suspendContext(int thread_num)
268{
269    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
270
271    assert(thread_num == 0);
272    assert(thread);
273
274    if (_status == Idle)
275        return;
276
277    assert(_status == Running);
278
279    // tick event may not be scheduled if this gets called from inside
280    // an instruction's execution, e.g. "quiesce"
281    if (tickEvent.scheduled())
282        deschedule(tickEvent);
283
284    notIdleFraction--;
285    _status = Idle;
286}
287
288
289template <class T>
290Fault
291AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
292{
293    // use the CPU's statically allocated read request and packet objects
294    Request *req = &data_read_req;
295
296    if (traceData) {
297        traceData->setAddr(addr);
298    }
299
300    //The block size of our peer.
301    int blockSize = dcachePort.peerBlockSize();
302    //The size of the data we're trying to read.
303    int dataSize = sizeof(T);
304
305    uint8_t * dataPtr = (uint8_t *)&data;
306
307    //The address of the second part of this access if it needs to be split
308    //across a cache line boundary.
309    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
310
311    if(secondAddr > addr)
312        dataSize = secondAddr - addr;
313
314    dcache_latency = 0;
315
316    while(1) {
317        req->setVirt(0, addr, dataSize, flags, thread->readPC());
318
319        // translate to physical address
320        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Read);
321
322        // Now do the access.
323        if (fault == NoFault) {
324            Packet pkt = Packet(req,
325                    req->isLlsc() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
326                    Packet::Broadcast);
327            pkt.dataStatic(dataPtr);
328
329            if (req->isMmapedIpr())
330                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
331            else {
332                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
333                    dcache_latency += physmemPort.sendAtomic(&pkt);
334                else
335                    dcache_latency += dcachePort.sendAtomic(&pkt);
336            }
337            dcache_access = true;
338
339            assert(!pkt.isError());
340
341            if (req->isLlsc()) {
342                TheISA::handleLockedRead(thread, req);
343            }
344        }
345
346        // This will need a new way to tell if it has a dcache attached.
347        if (req->isUncacheable())
348            recordEvent("Uncached Read");
349
350        //If there's a fault, return it
351        if (fault != NoFault)
352            return fault;
353        //If we don't need to access a second cache line, stop now.
354        if (secondAddr <= addr)
355        {
356            data = gtoh(data);
357            if (traceData) {
358                traceData->setData(data);
359            }
360            return fault;
361        }
362
363        /*
364         * Set up for accessing the second cache line.
365         */
366
367        //Move the pointer we're reading into to the correct location.
368        dataPtr += dataSize;
369        //Adjust the size to get the remaining bytes.
370        dataSize = addr + sizeof(T) - secondAddr;
371        //And access the right address.
372        addr = secondAddr;
373    }
374}
375
376#ifndef DOXYGEN_SHOULD_SKIP_THIS
377
378template
379Fault
380AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
381
382template
383Fault
384AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
385
386template
387Fault
388AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
389
390template
391Fault
392AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
393
394template
395Fault
396AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
397
398template
399Fault
400AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
401
402#endif //DOXYGEN_SHOULD_SKIP_THIS
403
404template<>
405Fault
406AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
407{
408    return read(addr, *(uint64_t*)&data, flags);
409}
410
411template<>
412Fault
413AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
414{
415    return read(addr, *(uint32_t*)&data, flags);
416}
417
418
419template<>
420Fault
421AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
422{
423    return read(addr, (uint32_t&)data, flags);
424}
425
426
427template <class T>
428Fault
429AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
430{
431    // use the CPU's statically allocated write request and packet objects
432    Request *req = &data_write_req;
433
434    if (traceData) {
435        traceData->setAddr(addr);
436    }
437
438    //The block size of our peer.
439    int blockSize = dcachePort.peerBlockSize();
440    //The size of the data we're trying to read.
441    int dataSize = sizeof(T);
442
443    uint8_t * dataPtr = (uint8_t *)&data;
444
445    //The address of the second part of this access if it needs to be split
446    //across a cache line boundary.
447    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
448
449    if(secondAddr > addr)
450        dataSize = secondAddr - addr;
451
452    dcache_latency = 0;
453
454    while(1) {
455        req->setVirt(0, addr, dataSize, flags, thread->readPC());
456
457        // translate to physical address
458        Fault fault = thread->dtb->translateAtomic(req, tc, BaseTLB::Write);
459
460        // Now do the access.
461        if (fault == NoFault) {
462            MemCmd cmd = MemCmd::WriteReq; // default
463            bool do_access = true;  // flag to suppress cache access
464
465            if (req->isLlsc()) {
466                cmd = MemCmd::StoreCondReq;
467                do_access = TheISA::handleLockedWrite(thread, req);
468            } else if (req->isSwap()) {
469                cmd = MemCmd::SwapReq;
470                if (req->isCondSwap()) {
471                    assert(res);
472                    req->setExtraData(*res);
473                }
474            }
475
476            if (do_access) {
477                Packet pkt = Packet(req, cmd, Packet::Broadcast);
478                pkt.dataStatic(dataPtr);
479
480                if (req->isMmapedIpr()) {
481                    dcache_latency +=
482                        TheISA::handleIprWrite(thread->getTC(), &pkt);
483                } else {
484                    //XXX This needs to be outside of the loop in order to
485                    //work properly for cache line boundary crossing
486                    //accesses in transendian simulations.
487                    data = htog(data);
488                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
489                        dcache_latency += physmemPort.sendAtomic(&pkt);
490                    else
491                        dcache_latency += dcachePort.sendAtomic(&pkt);
492                }
493                dcache_access = true;
494                assert(!pkt.isError());
495
496                if (req->isSwap()) {
497                    assert(res);
498                    *res = pkt.get<T>();
499                }
500            }
501
502            if (res && !req->isSwap()) {
503                *res = req->getExtraData();
504            }
505        }
506
507        // This will need a new way to tell if it's hooked up to a cache or not.
508        if (req->isUncacheable())
509            recordEvent("Uncached Write");
510
511        //If there's a fault or we don't need to access a second cache line,
512        //stop now.
513        if (fault != NoFault || secondAddr <= addr)
514        {
515            // If the write needs to have a fault on the access, consider
516            // calling changeStatus() and changing it to "bad addr write"
517            // or something.
518            if (traceData) {
519                traceData->setData(gtoh(data));
520            }
521            return fault;
522        }
523
524        /*
525         * Set up for accessing the second cache line.
526         */
527
528        //Move the pointer we're reading into to the correct location.
529        dataPtr += dataSize;
530        //Adjust the size to get the remaining bytes.
531        dataSize = addr + sizeof(T) - secondAddr;
532        //And access the right address.
533        addr = secondAddr;
534    }
535}
536
537
538#ifndef DOXYGEN_SHOULD_SKIP_THIS
539
540template
541Fault
542AtomicSimpleCPU::write(Twin32_t data, Addr addr,
543                       unsigned flags, uint64_t *res);
544
545template
546Fault
547AtomicSimpleCPU::write(Twin64_t data, Addr addr,
548                       unsigned flags, uint64_t *res);
549
550template
551Fault
552AtomicSimpleCPU::write(uint64_t data, Addr addr,
553                       unsigned flags, uint64_t *res);
554
555template
556Fault
557AtomicSimpleCPU::write(uint32_t data, Addr addr,
558                       unsigned flags, uint64_t *res);
559
560template
561Fault
562AtomicSimpleCPU::write(uint16_t data, Addr addr,
563                       unsigned flags, uint64_t *res);
564
565template
566Fault
567AtomicSimpleCPU::write(uint8_t data, Addr addr,
568                       unsigned flags, uint64_t *res);
569
570#endif //DOXYGEN_SHOULD_SKIP_THIS
571
572template<>
573Fault
574AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
575{
576    return write(*(uint64_t*)&data, addr, flags, res);
577}
578
579template<>
580Fault
581AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
582{
583    return write(*(uint32_t*)&data, addr, flags, res);
584}
585
586
587template<>
588Fault
589AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
590{
591    return write((uint32_t)data, addr, flags, res);
592}
593
594
595void
596AtomicSimpleCPU::tick()
597{
598    DPRINTF(SimpleCPU, "Tick\n");
599
600    Tick latency = 0;
601
602    for (int i = 0; i < width; ++i) {
603        numCycles++;
604
605        if (!curStaticInst || !curStaticInst->isDelayedCommit())
606            checkForInterrupts();
607
608        checkPcEventQueue();
609
610        Fault fault = NoFault;
611
612        bool fromRom = isRomMicroPC(thread->readMicroPC());
613        if (!fromRom && !curMacroStaticInst) {
614            setupFetchRequest(&ifetch_req);
615            fault = thread->itb->translateAtomic(&ifetch_req, tc,
616                                                 BaseTLB::Execute);
617        }
618
619        if (fault == NoFault) {
620            Tick icache_latency = 0;
621            bool icache_access = false;
622            dcache_access = false; // assume no dcache access
623
624            if (!fromRom && !curMacroStaticInst) {
625                // This is commented out because the predecoder would act like
626                // a tiny cache otherwise. It wouldn't be flushed when needed
627                // like the I cache. It should be flushed, and when that works
628                // this code should be uncommented.
629                //Fetch more instruction memory if necessary
630                //if(predecoder.needMoreBytes())
631                //{
632                    icache_access = true;
633                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
634                                               Packet::Broadcast);
635                    ifetch_pkt.dataStatic(&inst);
636
637                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
638                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
639                    else
640                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
641
642                    assert(!ifetch_pkt.isError());
643
644                    // ifetch_req is initialized to read the instruction directly
645                    // into the CPU object's inst field.
646                //}
647            }
648
649            preExecute();
650
651            if (curStaticInst) {
652                fault = curStaticInst->execute(this, traceData);
653
654                // keep an instruction count
655                if (fault == NoFault)
656                    countInst();
657                else if (traceData) {
658                    // If there was a fault, we should trace this instruction.
659                    delete traceData;
660                    traceData = NULL;
661                }
662
663                postExecute();
664            }
665
666            // @todo remove me after debugging with legion done
667            if (curStaticInst && (!curStaticInst->isMicroop() ||
668                        curStaticInst->isFirstMicroop()))
669                instCnt++;
670
671            Tick stall_ticks = 0;
672            if (simulate_inst_stalls && icache_access)
673                stall_ticks += icache_latency;
674
675            if (simulate_data_stalls && dcache_access)
676                stall_ticks += dcache_latency;
677
678            if (stall_ticks) {
679                Tick stall_cycles = stall_ticks / ticks(1);
680                Tick aligned_stall_ticks = ticks(stall_cycles);
681
682                if (aligned_stall_ticks < stall_ticks)
683                    aligned_stall_ticks += 1;
684
685                latency += aligned_stall_ticks;
686            }
687
688        }
689        if(fault != NoFault || !stayAtPC)
690            advancePC(fault);
691    }
692
693    // instruction takes at least one cycle
694    if (latency < ticks(1))
695        latency = ticks(1);
696
697    if (_status != Idle)
698        schedule(tickEvent, curTick + latency);
699}
700
701
702void
703AtomicSimpleCPU::printAddr(Addr a)
704{
705    dcachePort.printAddr(a);
706}
707
708
709////////////////////////////////////////////////////////////////////////
710//
711//  AtomicSimpleCPU Simulation Object
712//
713AtomicSimpleCPU *
714AtomicSimpleCPUParams::create()
715{
716    numThreads = 1;
717#if !FULL_SYSTEM
718    if (workload.size() != 1)
719        panic("only one workload allowed");
720#endif
721    return new AtomicSimpleCPU(this);
722}
723