atomic.cc revision 5714
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description() const
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->contextId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96    // Atomic doesn't do MT right now, so contextId == threadId
97    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
98    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
99    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
100}
101
102bool
103AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
104{
105    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
106    return true;
107}
108
109Tick
110AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
111{
112    //Snooping a coherence request, just return
113    return 0;
114}
115
116void
117AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
118{
119    //No internal storage to update, just return
120    return;
121}
122
123void
124AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
125{
126    if (status == RangeChange) {
127        if (!snoopRangeSent) {
128            snoopRangeSent = true;
129            sendStatusChange(Port::RangeChange);
130        }
131        return;
132    }
133
134    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
135}
136
137void
138AtomicSimpleCPU::CpuPort::recvRetry()
139{
140    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
141}
142
143void
144AtomicSimpleCPU::DcachePort::setPeer(Port *port)
145{
146    Port::setPeer(port);
147
148#if FULL_SYSTEM
149    // Update the ThreadContext's memory ports (Functional/Virtual
150    // Ports)
151    cpu->tcBase()->connectMemPorts(cpu->tcBase());
152#endif
153}
154
155AtomicSimpleCPU::AtomicSimpleCPU(AtomicSimpleCPUParams *p)
156    : BaseSimpleCPU(p), tickEvent(this), width(p->width),
157      simulate_data_stalls(p->simulate_data_stalls),
158      simulate_inst_stalls(p->simulate_inst_stalls),
159      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
160      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
161{
162    _status = Idle;
163
164    icachePort.snoopRangeSent = false;
165    dcachePort.snoopRangeSent = false;
166
167}
168
169
170AtomicSimpleCPU::~AtomicSimpleCPU()
171{
172}
173
174void
175AtomicSimpleCPU::serialize(ostream &os)
176{
177    SimObject::State so_state = SimObject::getState();
178    SERIALIZE_ENUM(so_state);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    BaseSimpleCPU::unserialize(cp, section);
190    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
191}
192
193void
194AtomicSimpleCPU::resume()
195{
196    if (_status == Idle || _status == SwitchedOut)
197        return;
198
199    DPRINTF(SimpleCPU, "Resume\n");
200    assert(system->getMemoryMode() == Enums::atomic);
201
202    changeState(SimObject::Running);
203    if (thread->status() == ThreadContext::Active) {
204        if (!tickEvent.scheduled())
205            schedule(tickEvent, nextCycle());
206    }
207}
208
209void
210AtomicSimpleCPU::switchOut()
211{
212    assert(_status == Running || _status == Idle);
213    _status = SwitchedOut;
214
215    tickEvent.squash();
216}
217
218
219void
220AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
221{
222    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
223
224    assert(!tickEvent.scheduled());
225
226    // if any of this CPU's ThreadContexts are active, mark the CPU as
227    // running and schedule its tick event.
228    for (int i = 0; i < threadContexts.size(); ++i) {
229        ThreadContext *tc = threadContexts[i];
230        if (tc->status() == ThreadContext::Active && _status != Running) {
231            _status = Running;
232            schedule(tickEvent, nextCycle());
233            break;
234        }
235    }
236    if (_status != Running) {
237        _status = Idle;
238    }
239    assert(threadContexts.size() == 1);
240    ifetch_req.setThreadContext(_cpuId, 0); // Add thread ID if we add MT
241    data_read_req.setThreadContext(_cpuId, 0); // Add thread ID here too
242    data_write_req.setThreadContext(_cpuId, 0); // Add thread ID here too
243}
244
245
246void
247AtomicSimpleCPU::activateContext(int thread_num, int delay)
248{
249    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
250
251    assert(thread_num == 0);
252    assert(thread);
253
254    assert(_status == Idle);
255    assert(!tickEvent.scheduled());
256
257    notIdleFraction++;
258    numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend);
259
260    //Make sure ticks are still on multiples of cycles
261    schedule(tickEvent, nextCycle(curTick + ticks(delay)));
262    _status = Running;
263}
264
265
266void
267AtomicSimpleCPU::suspendContext(int thread_num)
268{
269    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
270
271    assert(thread_num == 0);
272    assert(thread);
273
274    assert(_status == Running);
275
276    // tick event may not be scheduled if this gets called from inside
277    // an instruction's execution, e.g. "quiesce"
278    if (tickEvent.scheduled())
279        deschedule(tickEvent);
280
281    notIdleFraction--;
282    _status = Idle;
283}
284
285
286template <class T>
287Fault
288AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
289{
290    // use the CPU's statically allocated read request and packet objects
291    Request *req = &data_read_req;
292
293    if (traceData) {
294        traceData->setAddr(addr);
295    }
296
297    //The block size of our peer.
298    int blockSize = dcachePort.peerBlockSize();
299    //The size of the data we're trying to read.
300    int dataSize = sizeof(T);
301
302    uint8_t * dataPtr = (uint8_t *)&data;
303
304    //The address of the second part of this access if it needs to be split
305    //across a cache line boundary.
306    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
307
308    if(secondAddr > addr)
309        dataSize = secondAddr - addr;
310
311    dcache_latency = 0;
312
313    while(1) {
314        req->setVirt(0, addr, dataSize, flags, thread->readPC());
315
316        // translate to physical address
317        Fault fault = thread->translateDataReadReq(req);
318
319        // Now do the access.
320        if (fault == NoFault) {
321            Packet pkt = Packet(req,
322                    req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
323                    Packet::Broadcast);
324            pkt.dataStatic(dataPtr);
325
326            if (req->isMmapedIpr())
327                dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt);
328            else {
329                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
330                    dcache_latency += physmemPort.sendAtomic(&pkt);
331                else
332                    dcache_latency += dcachePort.sendAtomic(&pkt);
333            }
334            dcache_access = true;
335
336            assert(!pkt.isError());
337
338            if (req->isLocked()) {
339                TheISA::handleLockedRead(thread, req);
340            }
341        }
342
343        // This will need a new way to tell if it has a dcache attached.
344        if (req->isUncacheable())
345            recordEvent("Uncached Read");
346
347        //If there's a fault, return it
348        if (fault != NoFault)
349            return fault;
350        //If we don't need to access a second cache line, stop now.
351        if (secondAddr <= addr)
352        {
353            data = gtoh(data);
354            if (traceData) {
355                traceData->setData(data);
356            }
357            return fault;
358        }
359
360        /*
361         * Set up for accessing the second cache line.
362         */
363
364        //Move the pointer we're reading into to the correct location.
365        dataPtr += dataSize;
366        //Adjust the size to get the remaining bytes.
367        dataSize = addr + sizeof(T) - secondAddr;
368        //And access the right address.
369        addr = secondAddr;
370    }
371}
372
373Fault
374AtomicSimpleCPU::translateDataReadAddr(Addr vaddr, Addr & paddr,
375        int size, unsigned flags)
376{
377    // use the CPU's statically allocated read request and packet objects
378    Request *req = &data_read_req;
379
380    if (traceData) {
381        traceData->setAddr(vaddr);
382    }
383
384    //The block size of our peer.
385    int blockSize = dcachePort.peerBlockSize();
386    //The size of the data we're trying to read.
387    int dataSize = size;
388
389    bool firstTimeThrough = true;
390
391    //The address of the second part of this access if it needs to be split
392    //across a cache line boundary.
393    Addr secondAddr = roundDown(vaddr + dataSize - 1, blockSize);
394
395    if(secondAddr > vaddr)
396        dataSize = secondAddr - vaddr;
397
398    while(1) {
399        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
400
401        // translate to physical address
402        Fault fault = thread->translateDataReadReq(req);
403
404        //If there's a fault, return it
405        if (fault != NoFault)
406            return fault;
407
408        if (firstTimeThrough) {
409            paddr = req->getPaddr();
410            firstTimeThrough = false;
411        }
412
413        //If we don't need to access a second cache line, stop now.
414        if (secondAddr <= vaddr)
415            return fault;
416
417        /*
418         * Set up for accessing the second cache line.
419         */
420
421        //Adjust the size to get the remaining bytes.
422        dataSize = vaddr + size - secondAddr;
423        //And access the right address.
424        vaddr = secondAddr;
425    }
426}
427
428#ifndef DOXYGEN_SHOULD_SKIP_THIS
429
430template
431Fault
432AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
433
434template
435Fault
436AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
437
438template
439Fault
440AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
441
442template
443Fault
444AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
445
446template
447Fault
448AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
449
450template
451Fault
452AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
453
454#endif //DOXYGEN_SHOULD_SKIP_THIS
455
456template<>
457Fault
458AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
459{
460    return read(addr, *(uint64_t*)&data, flags);
461}
462
463template<>
464Fault
465AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
466{
467    return read(addr, *(uint32_t*)&data, flags);
468}
469
470
471template<>
472Fault
473AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
474{
475    return read(addr, (uint32_t&)data, flags);
476}
477
478
479template <class T>
480Fault
481AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
482{
483    // use the CPU's statically allocated write request and packet objects
484    Request *req = &data_write_req;
485
486    if (traceData) {
487        traceData->setAddr(addr);
488    }
489
490    //The block size of our peer.
491    int blockSize = dcachePort.peerBlockSize();
492    //The size of the data we're trying to read.
493    int dataSize = sizeof(T);
494
495    uint8_t * dataPtr = (uint8_t *)&data;
496
497    //The address of the second part of this access if it needs to be split
498    //across a cache line boundary.
499    Addr secondAddr = roundDown(addr + dataSize - 1, blockSize);
500
501    if(secondAddr > addr)
502        dataSize = secondAddr - addr;
503
504    dcache_latency = 0;
505
506    while(1) {
507        req->setVirt(0, addr, dataSize, flags, thread->readPC());
508
509        // translate to physical address
510        Fault fault = thread->translateDataWriteReq(req);
511
512        // Now do the access.
513        if (fault == NoFault) {
514            MemCmd cmd = MemCmd::WriteReq; // default
515            bool do_access = true;  // flag to suppress cache access
516
517            if (req->isLocked()) {
518                cmd = MemCmd::StoreCondReq;
519                do_access = TheISA::handleLockedWrite(thread, req);
520            } else if (req->isSwap()) {
521                cmd = MemCmd::SwapReq;
522                if (req->isCondSwap()) {
523                    assert(res);
524                    req->setExtraData(*res);
525                }
526            }
527
528            if (do_access) {
529                Packet pkt = Packet(req, cmd, Packet::Broadcast);
530                pkt.dataStatic(dataPtr);
531
532                if (req->isMmapedIpr()) {
533                    dcache_latency +=
534                        TheISA::handleIprWrite(thread->getTC(), &pkt);
535                } else {
536                    //XXX This needs to be outside of the loop in order to
537                    //work properly for cache line boundary crossing
538                    //accesses in transendian simulations.
539                    data = htog(data);
540                    if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
541                        dcache_latency += physmemPort.sendAtomic(&pkt);
542                    else
543                        dcache_latency += dcachePort.sendAtomic(&pkt);
544                }
545                dcache_access = true;
546                assert(!pkt.isError());
547
548                if (req->isSwap()) {
549                    assert(res);
550                    *res = pkt.get<T>();
551                }
552            }
553
554            if (res && !req->isSwap()) {
555                *res = req->getExtraData();
556            }
557        }
558
559        // This will need a new way to tell if it's hooked up to a cache or not.
560        if (req->isUncacheable())
561            recordEvent("Uncached Write");
562
563        //If there's a fault or we don't need to access a second cache line,
564        //stop now.
565        if (fault != NoFault || secondAddr <= addr)
566        {
567            // If the write needs to have a fault on the access, consider
568            // calling changeStatus() and changing it to "bad addr write"
569            // or something.
570            if (traceData) {
571                traceData->setData(data);
572            }
573            return fault;
574        }
575
576        /*
577         * Set up for accessing the second cache line.
578         */
579
580        //Move the pointer we're reading into to the correct location.
581        dataPtr += dataSize;
582        //Adjust the size to get the remaining bytes.
583        dataSize = addr + sizeof(T) - secondAddr;
584        //And access the right address.
585        addr = secondAddr;
586    }
587}
588
589Fault
590AtomicSimpleCPU::translateDataWriteAddr(Addr vaddr, Addr &paddr,
591        int size, unsigned flags)
592{
593    // use the CPU's statically allocated write request and packet objects
594    Request *req = &data_write_req;
595
596    if (traceData) {
597        traceData->setAddr(vaddr);
598    }
599
600    //The block size of our peer.
601    int blockSize = dcachePort.peerBlockSize();
602
603    //The address of the second part of this access if it needs to be split
604    //across a cache line boundary.
605    Addr secondAddr = roundDown(vaddr + size - 1, blockSize);
606
607    //The size of the data we're trying to read.
608    int dataSize = size;
609
610    bool firstTimeThrough = true;
611
612    if(secondAddr > vaddr)
613        dataSize = secondAddr - vaddr;
614
615    dcache_latency = 0;
616
617    while(1) {
618        req->setVirt(0, vaddr, dataSize, flags, thread->readPC());
619
620        // translate to physical address
621        Fault fault = thread->translateDataWriteReq(req);
622
623        //If there's a fault or we don't need to access a second cache line,
624        //stop now.
625        if (fault != NoFault)
626            return fault;
627
628        if (firstTimeThrough) {
629            paddr = req->getPaddr();
630            firstTimeThrough = false;
631        }
632
633        if (secondAddr <= vaddr)
634            return fault;
635
636        /*
637         * Set up for accessing the second cache line.
638         */
639
640        //Adjust the size to get the remaining bytes.
641        dataSize = vaddr + size - secondAddr;
642        //And access the right address.
643        vaddr = secondAddr;
644    }
645}
646
647
648#ifndef DOXYGEN_SHOULD_SKIP_THIS
649
650template
651Fault
652AtomicSimpleCPU::write(Twin32_t data, Addr addr,
653                       unsigned flags, uint64_t *res);
654
655template
656Fault
657AtomicSimpleCPU::write(Twin64_t data, Addr addr,
658                       unsigned flags, uint64_t *res);
659
660template
661Fault
662AtomicSimpleCPU::write(uint64_t data, Addr addr,
663                       unsigned flags, uint64_t *res);
664
665template
666Fault
667AtomicSimpleCPU::write(uint32_t data, Addr addr,
668                       unsigned flags, uint64_t *res);
669
670template
671Fault
672AtomicSimpleCPU::write(uint16_t data, Addr addr,
673                       unsigned flags, uint64_t *res);
674
675template
676Fault
677AtomicSimpleCPU::write(uint8_t data, Addr addr,
678                       unsigned flags, uint64_t *res);
679
680#endif //DOXYGEN_SHOULD_SKIP_THIS
681
682template<>
683Fault
684AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
685{
686    return write(*(uint64_t*)&data, addr, flags, res);
687}
688
689template<>
690Fault
691AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
692{
693    return write(*(uint32_t*)&data, addr, flags, res);
694}
695
696
697template<>
698Fault
699AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
700{
701    return write((uint32_t)data, addr, flags, res);
702}
703
704
705void
706AtomicSimpleCPU::tick()
707{
708    DPRINTF(SimpleCPU, "Tick\n");
709
710    Tick latency = 0;
711
712    for (int i = 0; i < width; ++i) {
713        numCycles++;
714
715        if (!curStaticInst || !curStaticInst->isDelayedCommit())
716            checkForInterrupts();
717
718        checkPcEventQueue();
719
720        Fault fault = NoFault;
721
722        bool fromRom = isRomMicroPC(thread->readMicroPC());
723        if (!fromRom)
724            fault = setupFetchRequest(&ifetch_req);
725
726        if (fault == NoFault) {
727            Tick icache_latency = 0;
728            bool icache_access = false;
729            dcache_access = false; // assume no dcache access
730
731            if (!fromRom) {
732                // This is commented out because the predecoder would act like
733                // a tiny cache otherwise. It wouldn't be flushed when needed
734                // like the I cache. It should be flushed, and when that works
735                // this code should be uncommented.
736                //Fetch more instruction memory if necessary
737                //if(predecoder.needMoreBytes())
738                //{
739                    icache_access = true;
740                    Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
741                                               Packet::Broadcast);
742                    ifetch_pkt.dataStatic(&inst);
743
744                    if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
745                        icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
746                    else
747                        icache_latency = icachePort.sendAtomic(&ifetch_pkt);
748
749                    assert(!ifetch_pkt.isError());
750
751                    // ifetch_req is initialized to read the instruction directly
752                    // into the CPU object's inst field.
753                //}
754            }
755
756            preExecute();
757
758            if (curStaticInst) {
759                fault = curStaticInst->execute(this, traceData);
760
761                // keep an instruction count
762                if (fault == NoFault)
763                    countInst();
764                else if (traceData) {
765                    // If there was a fault, we should trace this instruction.
766                    delete traceData;
767                    traceData = NULL;
768                }
769
770                postExecute();
771            }
772
773            // @todo remove me after debugging with legion done
774            if (curStaticInst && (!curStaticInst->isMicroop() ||
775                        curStaticInst->isFirstMicroop()))
776                instCnt++;
777
778            Tick stall_ticks = 0;
779            if (simulate_inst_stalls && icache_access)
780                stall_ticks += icache_latency;
781
782            if (simulate_data_stalls && dcache_access)
783                stall_ticks += dcache_latency;
784
785            if (stall_ticks) {
786                Tick stall_cycles = stall_ticks / ticks(1);
787                Tick aligned_stall_ticks = ticks(stall_cycles);
788
789                if (aligned_stall_ticks < stall_ticks)
790                    aligned_stall_ticks += 1;
791
792                latency += aligned_stall_ticks;
793            }
794
795        }
796        if(fault != NoFault || !stayAtPC)
797            advancePC(fault);
798    }
799
800    // instruction takes at least one cycle
801    if (latency < ticks(1))
802        latency = ticks(1);
803
804    if (_status != Idle)
805        schedule(tickEvent, curTick + latency);
806}
807
808
809void
810AtomicSimpleCPU::printAddr(Addr a)
811{
812    dcachePort.printAddr(a);
813}
814
815
816////////////////////////////////////////////////////////////////////////
817//
818//  AtomicSimpleCPU Simulation Object
819//
820AtomicSimpleCPU *
821AtomicSimpleCPUParams::create()
822{
823    numThreads = 1;
824#if !FULL_SYSTEM
825    if (workload.size() != 1)
826        panic("only one workload allowed");
827#endif
828    return new AtomicSimpleCPU(this);
829}
830