atomic.cc revision 5101
11689SN/A/* 22326SN/A * Copyright (c) 2002-2005 The Regents of The University of Michigan 31689SN/A * All rights reserved. 41689SN/A * 51689SN/A * Redistribution and use in source and binary forms, with or without 61689SN/A * modification, are permitted provided that the following conditions are 71689SN/A * met: redistributions of source code must retain the above copyright 81689SN/A * notice, this list of conditions and the following disclaimer; 91689SN/A * redistributions in binary form must reproduce the above copyright 101689SN/A * notice, this list of conditions and the following disclaimer in the 111689SN/A * documentation and/or other materials provided with the distribution; 121689SN/A * neither the name of the copyright holders nor the names of its 131689SN/A * contributors may be used to endorse or promote products derived from 141689SN/A * this software without specific prior written permission. 151689SN/A * 161689SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 171689SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 181689SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 191689SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 201689SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 211689SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 221689SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 231689SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 241689SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 251689SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 261689SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 272665Ssaidi@eecs.umich.edu * 282665Ssaidi@eecs.umich.edu * Authors: Steve Reinhardt 291689SN/A */ 301689SN/A 311060SN/A#include "arch/locked_mem.hh" 321060SN/A#include "arch/mmaped_ipr.hh" 331689SN/A#include "arch/utility.hh" 341060SN/A#include "base/bigint.hh" 351060SN/A#include "cpu/exetrace.hh" 361060SN/A#include "cpu/simple/atomic.hh" 371060SN/A#include "mem/packet.hh" 382292SN/A#include "mem/packet_access.hh" 391717SN/A#include "params/AtomicSimpleCPU.hh" 401060SN/A#include "sim/system.hh" 411681SN/A 422292SN/Ausing namespace std; 432873Sktlim@umich.eduusing namespace TheISA; 441060SN/A 451061SN/AAtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c) 462292SN/A : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c) 472292SN/A{ 482292SN/A} 492292SN/A 502820Sktlim@umich.edu 512292SN/Avoid 522820Sktlim@umich.eduAtomicSimpleCPU::TickEvent::process() 532820Sktlim@umich.edu{ 542307SN/A cpu->tick(); 552307SN/A} 561060SN/A 572292SN/Aconst char * 582292SN/AAtomicSimpleCPU::TickEvent::description() 592292SN/A{ 601060SN/A return "AtomicSimpleCPU tick"; 611060SN/A} 621060SN/A 631060SN/APort * 641060SN/AAtomicSimpleCPU::getPort(const std::string &if_name, int idx) 651060SN/A{ 661681SN/A if (if_name == "dcache_port") 672292SN/A return &dcachePort; 681681SN/A else if (if_name == "icache_port") 692292SN/A return &icachePort; 702292SN/A else if (if_name == "physmem_port") { 712292SN/A hasPhysMemPort = true; 722292SN/A return &physmemPort; 732292SN/A } 742935Sksewell@umich.edu else 752292SN/A panic("No Such Port\n"); 762292SN/A} 772820Sktlim@umich.edu 782820Sktlim@umich.eduvoid 792292SN/AAtomicSimpleCPU::init() 802292SN/A{ 812820Sktlim@umich.edu BaseCPU::init(); 822820Sktlim@umich.edu#if FULL_SYSTEM 832292SN/A for (int i = 0; i < threadContexts.size(); ++i) { 842292SN/A ThreadContext *tc = threadContexts[i]; 852292SN/A 862292SN/A // initialize CPU, including PC 872292SN/A TheISA::initCPU(tc, tc->readCpuId()); 882292SN/A } 892292SN/A#endif 902292SN/A if (hasPhysMemPort) { 911060SN/A bool snoop = false; 921060SN/A AddrRangeList pmAddrList; 931681SN/A physmemPort.getPeerAddressRanges(pmAddrList, snoop); 941062SN/A physMemAddr = *pmAddrList.begin(); 952292SN/A } 961062SN/A} 972301SN/A 982301SN/Abool 991062SN/AAtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt) 1002727Sktlim@umich.edu{ 1011062SN/A panic("AtomicSimpleCPU doesn't expect recvTiming callback!"); 1021062SN/A return true; 1031062SN/A} 1041062SN/A 1051062SN/ATick 1061062SN/AAtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) 1071062SN/A{ 1081062SN/A //Snooping a coherence request, just return 1091062SN/A return 0; 1101062SN/A} 1111062SN/A 1121062SN/Avoid 1131062SN/AAtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) 1141062SN/A{ 1151062SN/A //No internal storage to update, just return 1161062SN/A return; 1171062SN/A} 1181062SN/A 1191062SN/Avoid 1201062SN/AAtomicSimpleCPU::CpuPort::recvStatusChange(Status status) 1211062SN/A{ 1221062SN/A if (status == RangeChange) { 1231062SN/A if (!snoopRangeSent) { 1241062SN/A snoopRangeSent = true; 1251062SN/A sendStatusChange(Port::RangeChange); 1261062SN/A } 1271062SN/A return; 1281062SN/A } 1291062SN/A 1301062SN/A panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!"); 1311062SN/A} 1321062SN/A 1331062SN/Avoid 1341062SN/AAtomicSimpleCPU::CpuPort::recvRetry() 1351062SN/A{ 1361062SN/A panic("AtomicSimpleCPU doesn't expect recvRetry callback!"); 1371062SN/A} 1381062SN/A 1391062SN/Avoid 1401062SN/AAtomicSimpleCPU::DcachePort::setPeer(Port *port) 1411062SN/A{ 1422292SN/A Port::setPeer(port); 1432292SN/A 1442292SN/A#if FULL_SYSTEM 1452292SN/A // Update the ThreadContext's memory ports (Functional/Virtual 1461062SN/A // Ports) 1471062SN/A cpu->tcBase()->connectMemPorts(); 1481062SN/A#endif 1491062SN/A} 1501062SN/A 1511062SN/AAtomicSimpleCPU::AtomicSimpleCPU(Params *p) 1521062SN/A : BaseSimpleCPU(p), tickEvent(this), 1532292SN/A width(p->width), simulate_stalls(p->simulate_stalls), 1542292SN/A icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this), 1552292SN/A physmemPort(name() + "-iport", this), hasPhysMemPort(false) 1562292SN/A{ 1572292SN/A _status = Idle; 1582292SN/A 1592292SN/A icachePort.snoopRangeSent = false; 1602292SN/A dcachePort.snoopRangeSent = false; 1612292SN/A 1622292SN/A ifetch_req.setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT 1632301SN/A data_read_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too 1642727Sktlim@umich.edu data_write_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too 1652353SN/A} 1662727Sktlim@umich.edu 1672727Sktlim@umich.edu 1682727Sktlim@umich.eduAtomicSimpleCPU::~AtomicSimpleCPU() 1692727Sktlim@umich.edu{ 1702353SN/A} 1712727Sktlim@umich.edu 1722727Sktlim@umich.eduvoid 1732727Sktlim@umich.eduAtomicSimpleCPU::serialize(ostream &os) 1742727Sktlim@umich.edu{ 1752353SN/A SimObject::State so_state = SimObject::getState(); 1762727Sktlim@umich.edu SERIALIZE_ENUM(so_state); 1772727Sktlim@umich.edu Status _status = status(); 1782727Sktlim@umich.edu SERIALIZE_ENUM(_status); 1792301SN/A BaseSimpleCPU::serialize(os); 1802301SN/A nameOut(os, csprintf("%s.tickEvent", name())); 1812301SN/A tickEvent.serialize(os); 1822727Sktlim@umich.edu} 1832301SN/A 1842727Sktlim@umich.eduvoid 1852301SN/AAtomicSimpleCPU::unserialize(Checkpoint *cp, const string §ion) 1862301SN/A{ 1872301SN/A SimObject::State so_state; 1882727Sktlim@umich.edu UNSERIALIZE_ENUM(so_state); 1892301SN/A UNSERIALIZE_ENUM(_status); 1902727Sktlim@umich.edu BaseSimpleCPU::unserialize(cp, section); 1912301SN/A tickEvent.unserialize(cp, csprintf("%s.tickEvent", section)); 1922301SN/A} 1932301SN/A 1942727Sktlim@umich.eduvoid 1952301SN/AAtomicSimpleCPU::resume() 1962727Sktlim@umich.edu{ 1972301SN/A DPRINTF(SimpleCPU, "Resume\n"); 1982301SN/A if (_status != SwitchedOut && _status != Idle) { 1992301SN/A assert(system->getMemoryMode() == Enums::atomic); 2002727Sktlim@umich.edu 2012301SN/A changeState(SimObject::Running); 2022301SN/A if (thread->status() == ThreadContext::Active) { 2032301SN/A if (!tickEvent.scheduled()) { 2042301SN/A tickEvent.schedule(nextCycle()); 2052727Sktlim@umich.edu } 2062727Sktlim@umich.edu } 2072727Sktlim@umich.edu } 2082727Sktlim@umich.edu} 2092727Sktlim@umich.edu 2102727Sktlim@umich.eduvoid 2112727Sktlim@umich.eduAtomicSimpleCPU::switchOut() 2122727Sktlim@umich.edu{ 2132727Sktlim@umich.edu assert(status() == Running || status() == Idle); 2142301SN/A _status = SwitchedOut; 2152301SN/A 2162301SN/A tickEvent.squash(); 2172301SN/A} 2182301SN/A 2192727Sktlim@umich.edu 2202301SN/Avoid 2212326SN/AAtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU) 2222301SN/A{ 2232301SN/A BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort); 2242301SN/A 2252727Sktlim@umich.edu assert(!tickEvent.scheduled()); 2262301SN/A 2272326SN/A // if any of this CPU's ThreadContexts are active, mark the CPU as 2282301SN/A // running and schedule its tick event. 2292301SN/A for (int i = 0; i < threadContexts.size(); ++i) { 2302301SN/A ThreadContext *tc = threadContexts[i]; 2312727Sktlim@umich.edu if (tc->status() == ThreadContext::Active && _status != Running) { 2322301SN/A _status = Running; 2332326SN/A tickEvent.schedule(nextCycle()); 2342301SN/A break; 2352301SN/A } 2362301SN/A } 2372727Sktlim@umich.edu if (_status != Running) { 2382301SN/A _status = Idle; 2392326SN/A } 2402301SN/A} 2412301SN/A 2422301SN/A 2432727Sktlim@umich.eduvoid 2442301SN/AAtomicSimpleCPU::activateContext(int thread_num, int delay) 2452326SN/A{ 2462301SN/A DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay); 2472301SN/A 2482727Sktlim@umich.edu assert(thread_num == 0); 2492301SN/A assert(thread); 2502326SN/A 2512301SN/A assert(_status == Idle); 2522326SN/A assert(!tickEvent.scheduled()); 2532301SN/A 2542301SN/A notIdleFraction++; 2552727Sktlim@umich.edu numCycles += tickToCycles(thread->lastActivate - thread->lastSuspend); 2562301SN/A 2572326SN/A //Make sure ticks are still on multiples of cycles 2582301SN/A tickEvent.schedule(nextCycle(curTick + ticks(delay))); 2592326SN/A _status = Running; 2602301SN/A} 2612301SN/A 2622727Sktlim@umich.edu 2632326SN/Avoid 2641062SN/AAtomicSimpleCPU::suspendContext(int thread_num) 2651062SN/A{ 2661681SN/A DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num); 2671060SN/A 2682292SN/A assert(thread_num == 0); 2691060SN/A assert(thread); 2702292SN/A 2712292SN/A assert(_status == Running); 2722292SN/A 2732292SN/A // tick event may not be scheduled if this gets called from inside 2742292SN/A // an instruction's execution, e.g. "quiesce" 2752292SN/A if (tickEvent.scheduled()) 2762292SN/A tickEvent.deschedule(); 2772292SN/A 2782292SN/A notIdleFraction--; 2792292SN/A _status = Idle; 2802292SN/A} 2812292SN/A 2822292SN/A 2832733Sktlim@umich.edutemplate <class T> 2842292SN/AFault 2852292SN/AAtomicSimpleCPU::read(Addr addr, T &data, unsigned flags) 2861060SN/A{ 2871060SN/A // use the CPU's statically allocated read request and packet objects 2881060SN/A Request *req = &data_read_req; 2891061SN/A 2902292SN/A if (traceData) { 2912733Sktlim@umich.edu traceData->setAddr(addr); 2921060SN/A } 2931060SN/A 2941681SN/A //The block size of our peer. 2951060SN/A int blockSize = dcachePort.peerBlockSize(); 2962292SN/A //The size of the data we're trying to read. 2971060SN/A int dataSize = sizeof(T); 2982292SN/A 2991060SN/A uint8_t * dataPtr = (uint8_t *)&data; 3001060SN/A 3011060SN/A //The address of the second part of this access if it needs to be split 3021060SN/A //across a cache line boundary. 3031060SN/A Addr secondAddr = roundDown(addr + dataSize - 1, blockSize); 3041060SN/A 3051060SN/A if(secondAddr > addr) 3061060SN/A dataSize = secondAddr - addr; 3072292SN/A 3082292SN/A dcache_latency = 0; 3091060SN/A 3101060SN/A while(1) { 3111060SN/A req->setVirt(0, addr, dataSize, flags, thread->readPC()); 3121060SN/A 3131681SN/A // translate to physical address 3141060SN/A Fault fault = thread->translateDataReadReq(req); 3152292SN/A 3161060SN/A // Now do the access. 3172292SN/A if (fault == NoFault) { 3181060SN/A Packet pkt = Packet(req, 3191060SN/A req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq, 3201060SN/A Packet::Broadcast); 3211060SN/A pkt.dataStatic(dataPtr); 3221060SN/A 3231060SN/A if (req->isMmapedIpr()) 3241681SN/A dcache_latency += TheISA::handleIprRead(thread->getTC(), &pkt); 3251060SN/A else { 3262292SN/A if (hasPhysMemPort && pkt.getAddr() == physMemAddr) 3271060SN/A dcache_latency += physmemPort.sendAtomic(&pkt); 3282292SN/A else 3291060SN/A dcache_latency += dcachePort.sendAtomic(&pkt); 3301060SN/A } 3311060SN/A dcache_access = true; 3321060SN/A 3331060SN/A assert(!pkt.isError()); 3341060SN/A 3351681SN/A if (req->isLocked()) { 3361060SN/A TheISA::handleLockedRead(thread, req); 3372980Sgblack@eecs.umich.edu } 3381060SN/A } 3392292SN/A 3402292SN/A // This will need a new way to tell if it has a dcache attached. 3412292SN/A if (req->isUncacheable()) 3422292SN/A recordEvent("Uncached Read"); 3432292SN/A 3441060SN/A //If there's a fault, return it 3451060SN/A if (fault != NoFault) 3461681SN/A return fault; 3471060SN/A //If we don't need to access a second cache line, stop now. 3482292SN/A if (secondAddr <= addr) 3491060SN/A { 3502292SN/A data = gtoh(data); 3512292SN/A return fault; 3521060SN/A } 3531060SN/A 3542307SN/A /* 3552863Sktlim@umich.edu * Set up for accessing the second cache line. 3562843Sktlim@umich.edu */ 3572307SN/A 3582843Sktlim@umich.edu //Move the pointer we're reading into to the correct location. 3592843Sktlim@umich.edu dataPtr += dataSize; 3602863Sktlim@umich.edu //Adjust the size to get the remaining bytes. 3611681SN/A dataSize = addr + sizeof(T) - secondAddr; 3621681SN/A //And access the right address. 3632316SN/A addr = secondAddr; 3641681SN/A } 3652843Sktlim@umich.edu} 3662843Sktlim@umich.edu 3672843Sktlim@umich.edu#ifndef DOXYGEN_SHOULD_SKIP_THIS 3682843Sktlim@umich.edu 3692843Sktlim@umich.edutemplate 3702843Sktlim@umich.eduFault 3712843Sktlim@umich.eduAtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags); 3721681SN/A 3732348SN/Atemplate 3742307SN/AFault 3752367SN/AAtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags); 3762367SN/A 3771681SN/Atemplate 3782307SN/AFault 3792307SN/AAtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags); 3802307SN/A 3812307SN/Atemplate 3822307SN/AFault 3832307SN/AAtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags); 3842307SN/A 3852307SN/Atemplate 3862307SN/AFault 3872307SN/AAtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags); 3881681SN/A 3891681SN/Atemplate 3902307SN/AFault 3911681SN/AAtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags); 3922307SN/A 3931060SN/A#endif //DOXYGEN_SHOULD_SKIP_THIS 3942348SN/A 3952307SN/Atemplate<> 3962307SN/AFault 3972307SN/AAtomicSimpleCPU::read(Addr addr, double &data, unsigned flags) 3982307SN/A{ 3991060SN/A return read(addr, *(uint64_t*)&data, flags); 4002307SN/A} 4012307SN/A 4022307SN/Atemplate<> 4031060SN/AFault 4042307SN/AAtomicSimpleCPU::read(Addr addr, float &data, unsigned flags) 4052307SN/A{ 4061060SN/A return read(addr, *(uint32_t*)&data, flags); 4072307SN/A} 4082307SN/A 4092307SN/A 4102307SN/Atemplate<> 4112307SN/AFault 4121060SN/AAtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags) 4132307SN/A{ 4142307SN/A return read(addr, (uint32_t&)data, flags); 4152873Sktlim@umich.edu} 4162307SN/A 4171060SN/A 4181060SN/Atemplate <class T> 4191060SN/AFault 4201681SN/AAtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) 4211060SN/A{ 4222292SN/A // use the CPU's statically allocated write request and packet objects 4232107SN/A Request *req = &data_write_req; 4242292SN/A 4252292SN/A if (traceData) { 4262107SN/A traceData->setAddr(addr); 4272292SN/A } 4282292SN/A 4292107SN/A //The block size of our peer. 4302292SN/A int blockSize = dcachePort.peerBlockSize(); 4313093Sksewell@umich.edu //The size of the data we're trying to read. 4323093Sksewell@umich.edu int dataSize = sizeof(T); 4333093Sksewell@umich.edu 4342326SN/A uint8_t * dataPtr = (uint8_t *)&data; 4352935Sksewell@umich.edu 4362292SN/A //The address of the second part of this access if it needs to be split 4372107SN/A //across a cache line boundary. 4382292SN/A Addr secondAddr = roundDown(addr + dataSize - 1, blockSize); 4392935Sksewell@umich.edu 4402935Sksewell@umich.edu if(secondAddr > addr) 4412935Sksewell@umich.edu dataSize = secondAddr - addr; 4422292SN/A 4433093Sksewell@umich.edu dcache_latency = 0; 4442935Sksewell@umich.edu 4452935Sksewell@umich.edu while(1) { 4462935Sksewell@umich.edu req->setVirt(0, addr, dataSize, flags, thread->readPC()); 4472935Sksewell@umich.edu 4482935Sksewell@umich.edu // translate to physical address 4492935Sksewell@umich.edu Fault fault = thread->translateDataWriteReq(req); 4502935Sksewell@umich.edu 4512935Sksewell@umich.edu // Now do the access. 4522935Sksewell@umich.edu if (fault == NoFault) { 4532935Sksewell@umich.edu MemCmd cmd = MemCmd::WriteReq; // default 4542935Sksewell@umich.edu bool do_access = true; // flag to suppress cache access 4552935Sksewell@umich.edu 4562292SN/A if (req->isLocked()) { 4572292SN/A cmd = MemCmd::StoreCondReq; 4582292SN/A do_access = TheISA::handleLockedWrite(thread, req); 4592292SN/A } else if (req->isSwap()) { 4602107SN/A cmd = MemCmd::SwapReq; 4612292SN/A if (req->isCondSwap()) { 4622107SN/A assert(res); 4632292SN/A req->setExtraData(*res); 4642292SN/A } 4652107SN/A } 4662935Sksewell@umich.edu 4672935Sksewell@umich.edu if (do_access) { 4682702Sktlim@umich.edu Packet pkt = Packet(req, cmd, Packet::Broadcast); 4692107SN/A pkt.dataStatic(dataPtr); 4702107SN/A 4712107SN/A if (req->isMmapedIpr()) { 4722107SN/A dcache_latency += 4732292SN/A TheISA::handleIprWrite(thread->getTC(), &pkt); 4742292SN/A } else { 4752292SN/A //XXX This needs to be outside of the loop in order to 4762292SN/A //work properly for cache line boundary crossing 4772292SN/A //accesses in transendian simulations. 4782292SN/A data = htog(data); 4792292SN/A if (hasPhysMemPort && pkt.getAddr() == physMemAddr) 4802292SN/A dcache_latency += physmemPort.sendAtomic(&pkt); 4812292SN/A else 4822935Sksewell@umich.edu dcache_latency += dcachePort.sendAtomic(&pkt); 4833093Sksewell@umich.edu } 4842935Sksewell@umich.edu dcache_access = true; 4852935Sksewell@umich.edu assert(!pkt.isError()); 4862935Sksewell@umich.edu 4872935Sksewell@umich.edu if (req->isSwap()) { 4882935Sksewell@umich.edu assert(res); 4892935Sksewell@umich.edu *res = pkt.get<T>(); 4902935Sksewell@umich.edu } 4912935Sksewell@umich.edu } 4922935Sksewell@umich.edu 4932935Sksewell@umich.edu if (res && !req->isSwap()) { 4942935Sksewell@umich.edu *res = req->getExtraData(); 4952935Sksewell@umich.edu } 4963093Sksewell@umich.edu } 4973093Sksewell@umich.edu 4983093Sksewell@umich.edu // This will need a new way to tell if it's hooked up to a cache or not. 4993093Sksewell@umich.edu if (req->isUncacheable()) 5002935Sksewell@umich.edu recordEvent("Uncached Write"); 5012292SN/A 5022292SN/A //If there's a fault or we don't need to access a second cache line, 5032292SN/A //stop now. 5042292SN/A if (fault != NoFault || secondAddr <= addr) 5052292SN/A { 5062292SN/A // If the write needs to have a fault on the access, consider 5072292SN/A // calling changeStatus() and changing it to "bad addr write" 5082292SN/A // or something. 5092292SN/A return fault; 5102292SN/A } 5112292SN/A 5122292SN/A /* 5132292SN/A * Set up for accessing the second cache line. 5142292SN/A */ 5152292SN/A 5162292SN/A //Move the pointer we're reading into to the correct location. 5173732Sktlim@umich.edu dataPtr += dataSize; 5182292SN/A //Adjust the size to get the remaining bytes. 5192292SN/A dataSize = addr + sizeof(T) - secondAddr; 5202292SN/A //And access the right address. 5212292SN/A addr = secondAddr; 5222292SN/A } 5232292SN/A} 5242292SN/A 5252292SN/A 5262292SN/A#ifndef DOXYGEN_SHOULD_SKIP_THIS 5272292SN/A 5282292SN/Atemplate 5292292SN/AFault 5302292SN/AAtomicSimpleCPU::write(Twin32_t data, Addr addr, 5312292SN/A unsigned flags, uint64_t *res); 5322292SN/A 5332292SN/Atemplate 5343732Sktlim@umich.eduFault 5352292SN/AAtomicSimpleCPU::write(Twin64_t data, Addr addr, 5362348SN/A unsigned flags, uint64_t *res); 5372292SN/A 5382292SN/Atemplate 5392292SN/AFault 5402292SN/AAtomicSimpleCPU::write(uint64_t data, Addr addr, 5412292SN/A unsigned flags, uint64_t *res); 5422292SN/A 5432292SN/Atemplate 5442292SN/AFault 5452292SN/AAtomicSimpleCPU::write(uint32_t data, Addr addr, 5462292SN/A unsigned flags, uint64_t *res); 5472292SN/A 5482292SN/Atemplate 5492292SN/AFault 5502292SN/AAtomicSimpleCPU::write(uint16_t data, Addr addr, 5512292SN/A unsigned flags, uint64_t *res); 5522292SN/A 5532292SN/Atemplate 5542292SN/AFault 5552292SN/AAtomicSimpleCPU::write(uint8_t data, Addr addr, 5562292SN/A unsigned flags, uint64_t *res); 5572292SN/A 5582292SN/A#endif //DOXYGEN_SHOULD_SKIP_THIS 5592292SN/A 5602292SN/Atemplate<> 5612292SN/AFault 5622292SN/AAtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res) 5632292SN/A{ 5642292SN/A return write(*(uint64_t*)&data, addr, flags, res); 5652292SN/A} 5662292SN/A 5672292SN/Atemplate<> 5682292SN/AFault 5692292SN/AAtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res) 5702292SN/A{ 5712292SN/A return write(*(uint32_t*)&data, addr, flags, res); 5722292SN/A} 5732292SN/A 5742292SN/A 5752292SN/Atemplate<> 5762292SN/AFault 5772292SN/AAtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) 5782292SN/A{ 5792292SN/A return write((uint32_t)data, addr, flags, res); 5802292SN/A} 5812292SN/A 5822292SN/A 5831060SN/Avoid 5841681SN/AAtomicSimpleCPU::tick() 5851060SN/A{ 5861060SN/A DPRINTF(SimpleCPU, "Tick\n"); 5872292SN/A 5882292SN/A Tick latency = ticks(1); // instruction takes one cycle by default 5892292SN/A 5902292SN/A for (int i = 0; i < width; ++i) { 5912292SN/A numCycles++; 5922292SN/A 5931681SN/A if (!curStaticInst || !curStaticInst->isDelayedCommit()) 5941681SN/A checkForInterrupts(); 5951060SN/A 5962292SN/A Fault fault = setupFetchRequest(&ifetch_req); 5971060SN/A 5982292SN/A if (fault == NoFault) { 5992292SN/A Tick icache_latency = 0; 6001060SN/A bool icache_access = false; 6012292SN/A dcache_access = false; // assume no dcache access 6022292SN/A 6032292SN/A //Fetch more instruction memory if necessary 6042292SN/A //if(predecoder.needMoreBytes()) 6053221Sktlim@umich.edu //{ 6063221Sktlim@umich.edu icache_access = true; 6073221Sktlim@umich.edu Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq, 6083221Sktlim@umich.edu Packet::Broadcast); 6093221Sktlim@umich.edu ifetch_pkt.dataStatic(&inst); 6102292SN/A 6112292SN/A if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr) 6122292SN/A icache_latency = physmemPort.sendAtomic(&ifetch_pkt); 6132292SN/A else 6142326SN/A icache_latency = icachePort.sendAtomic(&ifetch_pkt); 6152292SN/A 6162292SN/A assert(!ifetch_pkt.isError()); 6172820Sktlim@umich.edu 6182292SN/A // ifetch_req is initialized to read the instruction directly 6192292SN/A // into the CPU object's inst field. 6202292SN/A //} 6212292SN/A 6222353SN/A preExecute(); 6232292SN/A 6242292SN/A if (curStaticInst) { 6252353SN/A fault = curStaticInst->execute(this, traceData); 6262353SN/A 6272292SN/A // keep an instruction count 6282292SN/A if (fault == NoFault) 6292292SN/A countInst(); 6302292SN/A else if (traceData) { 6312292SN/A // If there was a fault, we should trace this instruction. 6322292SN/A delete traceData; 6332292SN/A traceData = NULL; 6342292SN/A } 6352292SN/A 6362292SN/A postExecute(); 6372292SN/A } 6382292SN/A 6392731Sktlim@umich.edu // @todo remove me after debugging with legion done 6402292SN/A if (curStaticInst && (!curStaticInst->isMicroop() || 6412292SN/A curStaticInst->isFirstMicroop())) 6422292SN/A instCnt++; 6432292SN/A 6442292SN/A if (simulate_stalls) { 6452292SN/A Tick icache_stall = 6462292SN/A icache_access ? icache_latency - ticks(1) : 0; 6472292SN/A Tick dcache_stall = 6482292SN/A dcache_access ? dcache_latency - ticks(1) : 0; 6492292SN/A Tick stall_cycles = (icache_stall + dcache_stall) / ticks(1); 6502292SN/A if (ticks(stall_cycles) < (icache_stall + dcache_stall)) 6512292SN/A latency += ticks(stall_cycles+1); 6522292SN/A else 6532292SN/A latency += ticks(stall_cycles); 6542292SN/A } 6552292SN/A 6562292SN/A } 6572292SN/A if(fault != NoFault || !stayAtPC) 6582292SN/A advancePC(fault); 6592292SN/A } 6602292SN/A 6612292SN/A if (_status != Idle) 6622292SN/A tickEvent.schedule(curTick + latency); 6632292SN/A} 6642292SN/A 6652292SN/A 6662292SN/A//////////////////////////////////////////////////////////////////////// 6672292SN/A// 6682292SN/A// AtomicSimpleCPU Simulation Object 6692292SN/A// 6702292SN/AAtomicSimpleCPU * 6712292SN/AAtomicSimpleCPUParams::create() 6722292SN/A{ 6732292SN/A AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params(); 6742980Sgblack@eecs.umich.edu params->name = name; 6752292SN/A params->numberOfThreads = 1; 6762292SN/A params->max_insts_any_thread = max_insts_any_thread; 6772292SN/A params->max_insts_all_threads = max_insts_all_threads; 6782292SN/A params->max_loads_any_thread = max_loads_any_thread; 6792292SN/A params->max_loads_all_threads = max_loads_all_threads; 6802292SN/A params->progress_interval = progress_interval; 6812292SN/A params->deferRegistration = defer_registration; 6822292SN/A params->phase = phase; 6832292SN/A params->clock = clock; 6842292SN/A params->functionTrace = function_trace; 6852292SN/A params->functionTraceStart = function_trace_start; 6862292SN/A params->width = width; 6872292SN/A params->simulate_stalls = simulate_stalls; 6882292SN/A params->system = system; 6892980Sgblack@eecs.umich.edu params->cpu_id = cpu_id; 6902292SN/A params->tracer = tracer; 6912292SN/A 6922292SN/A params->itb = itb; 6932292SN/A params->dtb = dtb; 6942292SN/A#if FULL_SYSTEM 6952292SN/A params->profile = profile; 6962292SN/A params->do_quiesce = do_quiesce; 6971062SN/A params->do_checkpoint_insts = do_checkpoint_insts; 6981062SN/A params->do_statistics_insts = do_statistics_insts; 6991681SN/A#else 7001062SN/A if (workload.size() != 1) 7012292SN/A panic("only one workload allowed"); 7021062SN/A params->process = workload[0]; 7032292SN/A#endif 7041062SN/A 7052980Sgblack@eecs.umich.edu AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params); 7061062SN/A return cpu; 7072292SN/A} 7081062SN/A