atomic.cc revision 4998
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Steve Reinhardt
29 */
30
31#include "arch/locked_mem.hh"
32#include "arch/mmaped_ipr.hh"
33#include "arch/utility.hh"
34#include "base/bigint.hh"
35#include "cpu/exetrace.hh"
36#include "cpu/simple/atomic.hh"
37#include "mem/packet.hh"
38#include "mem/packet_access.hh"
39#include "params/AtomicSimpleCPU.hh"
40#include "sim/system.hh"
41
42using namespace std;
43using namespace TheISA;
44
45AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
46    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
47{
48}
49
50
51void
52AtomicSimpleCPU::TickEvent::process()
53{
54    cpu->tick();
55}
56
57const char *
58AtomicSimpleCPU::TickEvent::description()
59{
60    return "AtomicSimpleCPU tick";
61}
62
63Port *
64AtomicSimpleCPU::getPort(const std::string &if_name, int idx)
65{
66    if (if_name == "dcache_port")
67        return &dcachePort;
68    else if (if_name == "icache_port")
69        return &icachePort;
70    else if (if_name == "physmem_port") {
71        hasPhysMemPort = true;
72        return &physmemPort;
73    }
74    else
75        panic("No Such Port\n");
76}
77
78void
79AtomicSimpleCPU::init()
80{
81    BaseCPU::init();
82#if FULL_SYSTEM
83    for (int i = 0; i < threadContexts.size(); ++i) {
84        ThreadContext *tc = threadContexts[i];
85
86        // initialize CPU, including PC
87        TheISA::initCPU(tc, tc->readCpuId());
88    }
89#endif
90    if (hasPhysMemPort) {
91        bool snoop = false;
92        AddrRangeList pmAddrList;
93        physmemPort.getPeerAddressRanges(pmAddrList, snoop);
94        physMemAddr = *pmAddrList.begin();
95    }
96}
97
98bool
99AtomicSimpleCPU::CpuPort::recvTiming(PacketPtr pkt)
100{
101    panic("AtomicSimpleCPU doesn't expect recvTiming callback!");
102    return true;
103}
104
105Tick
106AtomicSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt)
107{
108    //Snooping a coherence request, just return
109    return 0;
110}
111
112void
113AtomicSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt)
114{
115    //No internal storage to update, just return
116    return;
117}
118
119void
120AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
121{
122    if (status == RangeChange) {
123        if (!snoopRangeSent) {
124            snoopRangeSent = true;
125            sendStatusChange(Port::RangeChange);
126        }
127        return;
128    }
129
130    panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
131}
132
133void
134AtomicSimpleCPU::CpuPort::recvRetry()
135{
136    panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
137}
138
139void
140AtomicSimpleCPU::DcachePort::setPeer(Port *port)
141{
142    Port::setPeer(port);
143
144#if FULL_SYSTEM
145    // Update the ThreadContext's memory ports (Functional/Virtual
146    // Ports)
147    cpu->tcBase()->connectMemPorts();
148#endif
149}
150
151AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
152    : BaseSimpleCPU(p), tickEvent(this),
153      width(p->width), simulate_stalls(p->simulate_stalls),
154      icachePort(name() + "-iport", this), dcachePort(name() + "-iport", this),
155      physmemPort(name() + "-iport", this), hasPhysMemPort(false)
156{
157    _status = Idle;
158
159    icachePort.snoopRangeSent = false;
160    dcachePort.snoopRangeSent = false;
161
162    ifetch_req.setThreadContext(p->cpu_id, 0); // Add thread ID if we add MT
163    data_read_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
164    data_write_req.setThreadContext(p->cpu_id, 0); // Add thread ID here too
165}
166
167
168AtomicSimpleCPU::~AtomicSimpleCPU()
169{
170}
171
172void
173AtomicSimpleCPU::serialize(ostream &os)
174{
175    SimObject::State so_state = SimObject::getState();
176    SERIALIZE_ENUM(so_state);
177    Status _status = status();
178    SERIALIZE_ENUM(_status);
179    BaseSimpleCPU::serialize(os);
180    nameOut(os, csprintf("%s.tickEvent", name()));
181    tickEvent.serialize(os);
182}
183
184void
185AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
186{
187    SimObject::State so_state;
188    UNSERIALIZE_ENUM(so_state);
189    UNSERIALIZE_ENUM(_status);
190    BaseSimpleCPU::unserialize(cp, section);
191    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
192}
193
194void
195AtomicSimpleCPU::resume()
196{
197    DPRINTF(SimpleCPU, "Resume\n");
198    if (_status != SwitchedOut && _status != Idle) {
199        assert(system->getMemoryMode() == Enums::atomic);
200
201        changeState(SimObject::Running);
202        if (thread->status() == ThreadContext::Active) {
203            if (!tickEvent.scheduled()) {
204                tickEvent.schedule(nextCycle());
205            }
206        }
207    }
208}
209
210void
211AtomicSimpleCPU::switchOut()
212{
213    assert(status() == Running || status() == Idle);
214    _status = SwitchedOut;
215
216    tickEvent.squash();
217}
218
219
220void
221AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
222{
223    BaseCPU::takeOverFrom(oldCPU, &icachePort, &dcachePort);
224
225    assert(!tickEvent.scheduled());
226
227    // if any of this CPU's ThreadContexts are active, mark the CPU as
228    // running and schedule its tick event.
229    for (int i = 0; i < threadContexts.size(); ++i) {
230        ThreadContext *tc = threadContexts[i];
231        if (tc->status() == ThreadContext::Active && _status != Running) {
232            _status = Running;
233            tickEvent.schedule(nextCycle());
234            break;
235        }
236    }
237    if (_status != Running) {
238        _status = Idle;
239    }
240}
241
242
243void
244AtomicSimpleCPU::activateContext(int thread_num, int delay)
245{
246    DPRINTF(SimpleCPU, "ActivateContext %d (%d cycles)\n", thread_num, delay);
247
248    assert(thread_num == 0);
249    assert(thread);
250
251    assert(_status == Idle);
252    assert(!tickEvent.scheduled());
253
254    notIdleFraction++;
255
256    //Make sure ticks are still on multiples of cycles
257    tickEvent.schedule(nextCycle(curTick + cycles(delay)));
258    _status = Running;
259}
260
261
262void
263AtomicSimpleCPU::suspendContext(int thread_num)
264{
265    DPRINTF(SimpleCPU, "SuspendContext %d\n", thread_num);
266
267    assert(thread_num == 0);
268    assert(thread);
269
270    assert(_status == Running);
271
272    // tick event may not be scheduled if this gets called from inside
273    // an instruction's execution, e.g. "quiesce"
274    if (tickEvent.scheduled())
275        tickEvent.deschedule();
276
277    notIdleFraction--;
278    _status = Idle;
279}
280
281
282template <class T>
283Fault
284AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
285{
286    // use the CPU's statically allocated read request and packet objects
287    Request *req = &data_read_req;
288    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
289
290    if (traceData) {
291        traceData->setAddr(addr);
292    }
293
294    // translate to physical address
295    Fault fault = thread->translateDataReadReq(req);
296
297    // Now do the access.
298    if (fault == NoFault) {
299        Packet pkt =
300            Packet(req,
301                   req->isLocked() ? MemCmd::LoadLockedReq : MemCmd::ReadReq,
302                   Packet::Broadcast);
303        pkt.dataStatic(&data);
304
305        if (req->isMmapedIpr())
306            dcache_latency = TheISA::handleIprRead(thread->getTC(), &pkt);
307        else {
308            if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
309                dcache_latency = physmemPort.sendAtomic(&pkt);
310            else
311                dcache_latency = dcachePort.sendAtomic(&pkt);
312        }
313        dcache_access = true;
314        assert(!pkt.isError());
315
316        data = gtoh(data);
317
318        if (req->isLocked()) {
319            TheISA::handleLockedRead(thread, req);
320        }
321    }
322
323    // This will need a new way to tell if it has a dcache attached.
324    if (req->isUncacheable())
325        recordEvent("Uncached Read");
326
327    return fault;
328}
329
330#ifndef DOXYGEN_SHOULD_SKIP_THIS
331
332template
333Fault
334AtomicSimpleCPU::read(Addr addr, Twin32_t &data, unsigned flags);
335
336template
337Fault
338AtomicSimpleCPU::read(Addr addr, Twin64_t &data, unsigned flags);
339
340template
341Fault
342AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
343
344template
345Fault
346AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
347
348template
349Fault
350AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
351
352template
353Fault
354AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
355
356#endif //DOXYGEN_SHOULD_SKIP_THIS
357
358template<>
359Fault
360AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
361{
362    return read(addr, *(uint64_t*)&data, flags);
363}
364
365template<>
366Fault
367AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
368{
369    return read(addr, *(uint32_t*)&data, flags);
370}
371
372
373template<>
374Fault
375AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
376{
377    return read(addr, (uint32_t&)data, flags);
378}
379
380
381template <class T>
382Fault
383AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
384{
385    // use the CPU's statically allocated write request and packet objects
386    Request *req = &data_write_req;
387    req->setVirt(0, addr, sizeof(T), flags, thread->readPC());
388
389    if (traceData) {
390        traceData->setAddr(addr);
391    }
392
393    // translate to physical address
394    Fault fault = thread->translateDataWriteReq(req);
395
396    // Now do the access.
397    if (fault == NoFault) {
398        MemCmd cmd = MemCmd::WriteReq; // default
399        bool do_access = true;  // flag to suppress cache access
400
401        if (req->isLocked()) {
402            cmd = MemCmd::StoreCondReq;
403            do_access = TheISA::handleLockedWrite(thread, req);
404        } else if (req->isSwap()) {
405            cmd = MemCmd::SwapReq;
406            if (req->isCondSwap()) {
407                assert(res);
408                req->setExtraData(*res);
409            }
410        }
411
412        if (do_access) {
413            Packet pkt = Packet(req, cmd, Packet::Broadcast);
414            pkt.dataStatic(&data);
415
416            if (req->isMmapedIpr()) {
417                dcache_latency = TheISA::handleIprWrite(thread->getTC(), &pkt);
418            } else {
419                data = htog(data);
420                if (hasPhysMemPort && pkt.getAddr() == physMemAddr)
421                    dcache_latency = physmemPort.sendAtomic(&pkt);
422                else
423                    dcache_latency = dcachePort.sendAtomic(&pkt);
424            }
425            dcache_access = true;
426            assert(!pkt.isError());
427
428            if (req->isSwap()) {
429                assert(res);
430                *res = pkt.get<T>();
431            }
432        }
433
434        if (res && !req->isSwap()) {
435            *res = req->getExtraData();
436        }
437    }
438
439    // This will need a new way to tell if it's hooked up to a cache or not.
440    if (req->isUncacheable())
441        recordEvent("Uncached Write");
442
443    // If the write needs to have a fault on the access, consider calling
444    // changeStatus() and changing it to "bad addr write" or something.
445    return fault;
446}
447
448
449#ifndef DOXYGEN_SHOULD_SKIP_THIS
450
451template
452Fault
453AtomicSimpleCPU::write(Twin32_t data, Addr addr,
454                       unsigned flags, uint64_t *res);
455
456template
457Fault
458AtomicSimpleCPU::write(Twin64_t data, Addr addr,
459                       unsigned flags, uint64_t *res);
460
461template
462Fault
463AtomicSimpleCPU::write(uint64_t data, Addr addr,
464                       unsigned flags, uint64_t *res);
465
466template
467Fault
468AtomicSimpleCPU::write(uint32_t data, Addr addr,
469                       unsigned flags, uint64_t *res);
470
471template
472Fault
473AtomicSimpleCPU::write(uint16_t data, Addr addr,
474                       unsigned flags, uint64_t *res);
475
476template
477Fault
478AtomicSimpleCPU::write(uint8_t data, Addr addr,
479                       unsigned flags, uint64_t *res);
480
481#endif //DOXYGEN_SHOULD_SKIP_THIS
482
483template<>
484Fault
485AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
486{
487    return write(*(uint64_t*)&data, addr, flags, res);
488}
489
490template<>
491Fault
492AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
493{
494    return write(*(uint32_t*)&data, addr, flags, res);
495}
496
497
498template<>
499Fault
500AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
501{
502    return write((uint32_t)data, addr, flags, res);
503}
504
505
506void
507AtomicSimpleCPU::tick()
508{
509    DPRINTF(SimpleCPU, "Tick\n");
510
511    Tick latency = cycles(1); // instruction takes one cycle by default
512
513    for (int i = 0; i < width; ++i) {
514        numCycles++;
515
516        if (!curStaticInst || !curStaticInst->isDelayedCommit())
517            checkForInterrupts();
518
519        Fault fault = setupFetchRequest(&ifetch_req);
520
521        if (fault == NoFault) {
522            Tick icache_latency = 0;
523            bool icache_access = false;
524            dcache_access = false; // assume no dcache access
525
526            //Fetch more instruction memory if necessary
527            //if(predecoder.needMoreBytes())
528            //{
529                icache_access = true;
530                Packet ifetch_pkt = Packet(&ifetch_req, MemCmd::ReadReq,
531                                           Packet::Broadcast);
532                ifetch_pkt.dataStatic(&inst);
533
534                if (hasPhysMemPort && ifetch_pkt.getAddr() == physMemAddr)
535                    icache_latency = physmemPort.sendAtomic(&ifetch_pkt);
536                else
537                    icache_latency = icachePort.sendAtomic(&ifetch_pkt);
538
539
540                // ifetch_req is initialized to read the instruction directly
541                // into the CPU object's inst field.
542            //}
543
544            preExecute();
545
546            if(curStaticInst)
547            {
548                fault = curStaticInst->execute(this, traceData);
549
550                // keep an instruction count
551                if (fault == NoFault)
552                    countInst();
553
554                postExecute();
555            }
556
557            // @todo remove me after debugging with legion done
558            if (curStaticInst && (!curStaticInst->isMicroop() ||
559                        curStaticInst->isFirstMicroop()))
560                instCnt++;
561
562            if (simulate_stalls) {
563                Tick icache_stall =
564                    icache_access ? icache_latency - cycles(1) : 0;
565                Tick dcache_stall =
566                    dcache_access ? dcache_latency - cycles(1) : 0;
567                Tick stall_cycles = (icache_stall + dcache_stall) / cycles(1);
568                if (cycles(stall_cycles) < (icache_stall + dcache_stall))
569                    latency += cycles(stall_cycles+1);
570                else
571                    latency += cycles(stall_cycles);
572            }
573
574        }
575        if(fault != NoFault || !stayAtPC)
576            advancePC(fault);
577    }
578
579    if (_status != Idle)
580        tickEvent.schedule(curTick + latency);
581}
582
583
584////////////////////////////////////////////////////////////////////////
585//
586//  AtomicSimpleCPU Simulation Object
587//
588AtomicSimpleCPU *
589AtomicSimpleCPUParams::create()
590{
591    AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
592    params->name = name;
593    params->numberOfThreads = 1;
594    params->max_insts_any_thread = max_insts_any_thread;
595    params->max_insts_all_threads = max_insts_all_threads;
596    params->max_loads_any_thread = max_loads_any_thread;
597    params->max_loads_all_threads = max_loads_all_threads;
598    params->progress_interval = progress_interval;
599    params->deferRegistration = defer_registration;
600    params->phase = phase;
601    params->clock = clock;
602    params->functionTrace = function_trace;
603    params->functionTraceStart = function_trace_start;
604    params->width = width;
605    params->simulate_stalls = simulate_stalls;
606    params->system = system;
607    params->cpu_id = cpu_id;
608    params->tracer = tracer;
609
610    params->itb = itb;
611    params->dtb = dtb;
612#if FULL_SYSTEM
613    params->profile = profile;
614    params->do_quiesce = do_quiesce;
615    params->do_checkpoint_insts = do_checkpoint_insts;
616    params->do_statistics_insts = do_statistics_insts;
617#else
618    if (workload.size() != 1)
619        panic("only one workload allowed");
620    params->process = workload[0];
621#endif
622
623    AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
624    return cpu;
625}
626